1
|
Versteeg N, Wellauer V, Wittenwiler S, Aerenhouts D, Clarys P, Clijsen R. Short-term cutaneous vasodilatory and thermosensory effects of topical methyl salicylate. Front Physiol 2024; 15:1347196. [PMID: 38706945 PMCID: PMC11066213 DOI: 10.3389/fphys.2024.1347196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Methyl salicylate, the main compound of wintergreen oil, is widely used in topical applications. However, its vascular and thermosensory effects are not fully understood. The primary aim was to investigate the effects of topical methyl salicylate on skin temperature (Tskin), skin microcirculation (MCskin) and muscle oxygen saturation (SmO2) compared to a placebo gel. The secondary aim was to assess thermosensory responses (thermal sensation, thermal comfort) and to explore to which extent these sensations correspond to the physiological responses over time. Methods 21 healthy women (22.2 ± 2.9 years) participated in this single-blind, randomized controlled trial. Custom-made natural wintergreen oil (12.9%), containing methyl salicylate (>99%) and a placebo gel, 1 g each, were applied simultaneously to two paravertebral skin areas (5 cm × 10 cm, Th4-Th7). Tskin (infrared thermal imaging), MCskin (laser speckle contrast imaging) and SmO2 (deep tissue oxygenation monitoring) and thermosensation (Likert scales) were assessed at baseline (BL) and at 5-min intervals during a 45 min post-application period (T0-T45). Results Both gels caused an initial decrease in Tskin, with Tskin(min) at T5 for both methyl salicylate (BL-T5: Δ-3.36°C) and placebo (BL-T5: Δ-3.90°C), followed by a gradual increase (p < .001). Methyl salicylate gel resulted in significantly higher Tskin than placebo between T5 and T40 (p < .05). For methyl salicylate, MCskin increased, with MCskin(max) at T5 (BL-T5: Δ88.7%). For placebo, MCskin decreased (BL-T5: Δ-17.5%), with significantly lower values compared to methyl salicylate between T0 and T45 (p < .05). Both gels had minimal effects on SmO2, with no significant differences between methyl salicylate and placebo (p > .05). Thermal sensation responses to topical methyl salicylate ranged from "cool" to "hot", with more intense sensations reported at T5. Discussion The findings indicate that topical methyl salicylate induces short-term cutaneous vasodilation, but it may not enhance skeletal muscle blood flow. This study highlights the complex sensory responses to its application, which may be based on the short-term modulation of thermosensitive transient receptor potential channels.
Collapse
Affiliation(s)
- Ninja Versteeg
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Vanessa Wellauer
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Selina Wittenwiler
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Dirk Aerenhouts
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Clijsen
- Rehabilitation and Exercise Science Laboratory (RESlab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Health, Bern University of Applied Sciences, Berne, Switzerland
| |
Collapse
|
2
|
Rosales AM, Walters MJ, McGlynn ML, Collins CW, Slivka DR. Influence of topical menthol gel on thermoregulation and perception while walking in the heat. Eur J Appl Physiol 2024; 124:317-327. [PMID: 37505231 DOI: 10.1007/s00421-023-05279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Menthol is known to elicit opposing thermoregulatory and perceptual alterations during intense exercise. The current purpose was to determine the thermoregulatory and perceptual effects of topical menthol application prior to walking in the heat. METHODS Twelve participants walked (1.6 m s-1, 5% grade) for 30 min in the heat (38 °C, 60% relative humidity) with either a 4% menthol or control gel on the upper (shoulder to wrist) and lower (mid-thigh to ankle) limbs. Skin blood flow (SkBF), sweat (rate, composition), skin conductivity, heart rate, temperature (skin, core), and thermal perception were measured prior to and during exercise. RESULTS Skin conductivity expressed as time to 10, 20, 30, and 40 µS was delayed due to menthol (559 ± 251, 770 ± 292, 1109 ± 301, 1299 ± 335 s, respectively) compared to the control (515 ± 260, 735 ± 256, 935 ± 300, 1148 ± 298 s, respectively, p = 0.048). Sweat rate relative to body surface area was lower due to menthol (0.55 ± 0.16 L h-1 m(2)-1) than the control (0.64 ± 0.16 L h-1 m(2)-1, p = 0.049). Core temperature did not differ at baseline between the menthol (37.4 ± 0.3 °C) and control (37.3 ± 0.4 °C, p = 0.298) but was higher at 10, 20, and 30 min due to menthol (37.5 ± 0.3, 37.7 ± 0.2, 38.1 ± 0.3 °C, respectively) compared to the control (37.3 ± 0.4, 37.4 ± 0.3, 37.7 ± 0.3 °C, respectively, p < 0.05). The largest rise in core temperature from baseline was at 30 min during menthol (0.7 ± 0.3 °C) compared to the control (0.4 ± 0.2 °C, p = 0.004). Overall, the menthol treatment was perceived cooler, reaching "slightly warm" whereas the control treatment reached "warm" (p < 0.001). CONCLUSION Menthol application to the limbs impairs whole-body thermoregulation while walking in the heat despite perceiving the environment as cooler.
Collapse
Affiliation(s)
- Alejandro M Rosales
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
- School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Matthias J Walters
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA.
- School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
| |
Collapse
|
3
|
Peel J, John K, Page J, Jeffries O, Heffernan SM, Tallent J, Waldron M. Topical application of isolated menthol and combined menthol-capsaicin creams: Exercise tolerance, thermal perception, pain, attentional focus and thermoregulation in the heat. Eur J Sport Sci 2023; 23:2038-2048. [PMID: 37161852 DOI: 10.1080/17461391.2023.2211966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We determined the effects of topically applied (i) isolated menthol cream, (ii) menthol and capsaicin co-application or (iii) placebo cream on exercise tolerance, thermal perception, pain, attentional focus and thermoregulation during exercise in the heat. Ten participants cycled at 70% maximal power output until exhaustion in 35°C and 20% relative humidity after application of (i) 5% isolated menthol, (ii) 5% menthol and 0.025% capsaicin co-application or (iii) placebo cream. Thermo-physiological responses were measured during exercise, with attentional focus and pain determined post-exercise on a 0-to-10 scale. Across the three conditions, time to exhaustion was 13.4 ± 4.8 min, mean ± SD infrared tympanic and skin temperature was 37.2 ± 0.6°C and 35.1 ± 1.2°C, respectively, and heart rate was 152 ± 47 bpm, with no changes between conditions (p > 0.05). Perceived exertion was lower in the isolated menthol vs. all other conditions (p < 0.05, ηp2 = 0.44). Thermal sensation was higher in menthol-capsaicin co-application vs. isolated menthol (p < 0.05, d = 1.1), while sweat rate was higher for capsaicin and menthol co-application compared to menthol (p < 0.05, d = 0.85). The median and interquartile range scores for pain were lower (p < 0.05) in the menthol condition (8, 7-8) compared to both menthol and capsaicin (10, 9-10) and placebo (9, 9-10), which was coupled with a greater distraction (p < 0.05) in the menthol condition (9, 7-10) compared to placebo (6, 5-7). Despite no performance effects for any topical cream application condition, these data reiterate the advantageous perceptual and analgesic role of menthol application and demonstrate no advantage of co-application with capsaicin.HighlightsTopical application of isolated menthol cream to cold-sensitive areas of the body during exhaustive exercise in the heat, elicited reduced perception of pain and enhanced sensation of cooling.While this reduction in generally unpleasant feelings (i.e. pain and heat) were coupled with lower RPE scores in the menthol condition and could be considered beneficial, there was no apparent ergogenic effect in an exercise tolerance test.Co-application of capsaicin and menthol appeared to inhibit the positive sensory effects elicited by menthol.Isolated menthol can induce changes in cognitive processes related to pain and exertion, while also reducing thermal sensation; however, the decision to use menthol creams must be balanced with the limited performance or thermoregulatory effects reported herein during exercise in hot environments.
Collapse
Affiliation(s)
- Jenny Peel
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Kevin John
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Joe Page
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Shane M Heffernan
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Colchester, Australia
| | - Mark Waldron
- A-STEM Centre, Faculty of Science & Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
4
|
Makibuchi T, Yamashiro K, Anazawa S, Fujimoto T, Ochi G, Ikarashi K, Sato D. Assessing the Effects of the Topical Application of L-Menthol on Pain-Related Somatosensory-Evoked Potentials Using Intra-Epidermal Stimulation. Brain Sci 2023; 13:918. [PMID: 37371396 DOI: 10.3390/brainsci13060918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
L-menthol is known to activate transient receptor potential melastatin 8 (TRPM8) and induce analgesia to thermal stimuli. However, since thermal stimulation leads to the interaction among the other TRP channels, it was unclear whether L-menthol causes analgesia to stimuli other than thermal stimuli. Therefore, we aimed to investigate whether activating TRPM8 via topical application of 10% menthol solution attenuates pain-related somatosensory-evoked potentials (pSEPs) and affects numerical rating scale (NRS) score using intra-epidermal electrical stimulation (IES). We applied 10% L-menthol or control solution on the dorsum of the right hand of 25 healthy participants. The pSEP and NRS, elicited by IES, and sensory threshold were measured before and after each solution was applied. The results showed that the topical application of 10% L-menthol solution significantly reduced N2-P2 amplitude in pSEPs compared with the control solution. Moreover, the N2 latency was significantly prolonged upon the topical application of L-menthol solution. NRS scores were similar under both conditions. These results suggest that topical application of L-menthol does not alter subjective sensation induced using IES, although it may attenuate afferent signals at free nerve endings even with stimuli that do not directly activate TRP channels.
Collapse
Affiliation(s)
- Taiki Makibuchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Sayaka Anazawa
- Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Genta Ochi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
5
|
Wang G, Hurr C. Effects of cutaneous administration of an over-the-counter menthol cream during temperate-water immersion for exercise-induced hyperthermia in men. Front Physiol 2023; 14:1161240. [PMID: 37234416 PMCID: PMC10206141 DOI: 10.3389/fphys.2023.1161240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Hyperthermia impairs various physiological functions and physical performance. We examined the effects of cutaneous administration with an over-the-counter (OTC) analgesic cream containing 20% methyl salicylate and 6% L-menthol during temperate-water immersion (TWI) for exercise-induced hyperthermia. Methods: In a randomized crossover design, twelve healthy males participated in both of two experiments. Firstly, participants underwent a 15-min TWI at 20°C with (CREAM) or without (CON) cutaneous application of an analgesic cream. Cutaneous vascular conductance (CVC) was measured using laser doppler flowmetry during TWI. In a subsequent experiment, same participants performed a 30-min strenuous interval exercise in a heated (35°C) environment to induce hyperthermia (~39°C), which was followed by 15 min of TWI. Results: Core body temperature, as measured by an ingestible telemetry sensor, and mean arterial pressure (MAP) were measured. CVC and %CVC (% baseline) were higher during TWI in CREAM than in CON (Condition effect: p = 0.0053 and p = 0.0010). An additional experiment revealed that core body heat loss during TWI was greater in CREAM than in CON (Cooling rate: CON 0.070 ± 0.020 vs. CREAM 0.084°C ± 0.026°C/min, p = 0.0039). A more attenuated MAP response was observed during TWI in CREAM than in CON (Condition effect: p = 0.0007). Conclusion: An OTC analgesic cream containing L-menthol and MS augmented cooling effects when cutaneously applied during TWI in exercise-induced hyperthermia. This was, at least in part, due to the counteractive vasodilatory effect of the analgesic cream. The cutaneous application of OTC analgesic cream may therefore provide a safe, accessible, and affordable means of enhancing the cooling effects of TWI.
Collapse
Affiliation(s)
- Gang Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Physical Education, Xinyang Normal University, Xingang, China
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Benito M, Lozano D, Miró F. Clinical Evaluation of Exercise-Induced Physiological Changes in Military Working Dogs (MWDs) Resulting from the Use or Non-Use of Cooling Vests during Training in Moderately Hot Environments. Animals (Basel) 2022; 12:ani12182347. [PMID: 36139205 PMCID: PMC9494994 DOI: 10.3390/ani12182347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A cooling vest is a clothing article especially designed to reduce body temperature and make exposure to heat in hot climates or environments more bearable. Such cooling vests can be of significant help to military working dogs (MWDs) in high-temperature regions. Dogs performing scent-detection tasks could benefit from the use of a cooling vest, if proven useful, by reducing the risk of heat stroke and olfactory fatigue. As different models of cooling vests are available for dogs, our aim was to compare wearing nothing versus two different models of cooling vests in a homogenous dog population during physical exercise (moderate-intensity running). We observed that the evaporative cooling waistcoat performed best. In conclusion, the waistcoats improve the cooling of the dogs during and after exercise, and differences between the two garment models exist. Abstract Nose work with military working dogs (MWDs) in warmer-than-usual areas has led us to look for new tools to reduce both heat stress and the risk of heat stroke. One of the different strategies to manage heat stress is the use of cooling vests, such as those used in humans. The aim was to assess three cooling conditions (using two different cooling vests during exercise and the non-use of such garments) by measuring core body temperature, systemic blood pressure and pulse rate before and after the exercise (moment: four measurement times) in military dogs of the I Military Police Battalion (in Valencia, Spain). All dogs were evaluated under all three conditions during the three days of the study. Significant differences were observed between condition, moment, and the interaction of these two factors, in relation to core body temperature and pulse rate. Therefore, the use of an evaporative cooling vest may further be useful as a routine thermal control and conditioning measure in MWDs.
Collapse
Affiliation(s)
- Mila Benito
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, 46115 Valencia, Spain
- Correspondence: ; Tel.: +34-961-369-000
| | - Diego Lozano
- Centro Militar de Veterinaria de la Defensa, 28024 Madrid, Spain
| | - Francisco Miró
- Department of Comparative Anatomy and Pathology, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|