1
|
Zhu Z, Zhong Y, He R, Zhong C, Chen J, Peng H. Mechanistic Insights into Salvigenin for Glucocorticoid-Induced Femoral Head Osteonecrosis: A Network Pharmacology and Experimental Study. Biomedicines 2025; 13:614. [PMID: 40149590 PMCID: PMC11940827 DOI: 10.3390/biomedicines13030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is a debilitating condition resulting from impaired bone metabolism and vascular disruption due to prolonged glucocorticoid use. This study aimed to explore the therapeutic potential of salvigenin, a flavonoid with antioxidative and estrogen-like properties, in alleviating GIOFH by modulating estrogen receptor alpha (ESR1) pathways. Methods: A network pharmacology approach was utilized to identify salvigenin's potential targets and their association with GIOFH. Protein-protein interaction networks, along with Gene Ontology and KEGG pathway analyses, were conducted to clarify salvigenin's multi-target mechanisms. Molecular docking and dynamics simulations assessed the interaction between salvigenin and ESR1. Experimental validation included in vitro assays on MG63 cells treated with dexamethasone (Dex) to mimic GIOFH, evaluating oxidative stress, apoptosis, osteogenic differentiation, and ESR1 expression. Results: Network analysis identified ESR1, NOS3, and MMP9 as key hub targets of salvigenin. Molecular docking and dynamics simulations confirmed stable binding of salvigenin to ESR1. Salvigenin significantly reduced Dex-induced oxidative stress and apoptosis in osteoblasts while restoring osteogenic differentiation and ESR1 expression. Functional assays showed improved mineralized nodule formation, ALP activity, and mitochondrial integrity in salvigenin-treated cells. Conclusions: Salvigenin exhibits significant therapeutic potential in addressing GIOFH through ESR1-mediated pathways. These results offer a strong foundation for future translational studies and the development of salvigenin-based therapies for glucocorticoid-induced bone disorders.
Collapse
Affiliation(s)
- Zhengjie Zhu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Z.); (Y.Z.); (C.Z.)
| | - Yujian Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Z.); (Y.Z.); (C.Z.)
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Changheng Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Z.); (Y.Z.); (C.Z.)
| | - Junwen Chen
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Z.); (Y.Z.); (C.Z.)
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.Z.); (Y.Z.); (C.Z.)
| |
Collapse
|
2
|
Biedrzycka A, Skwarek E. Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts. Adv Colloid Interface Sci 2024; 334:103308. [PMID: 39396420 DOI: 10.1016/j.cis.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Adrianna Biedrzycka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland
| | - Ewa Skwarek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland.
| |
Collapse
|
3
|
Zheng Y, Li J, Li Y, Wang J, Suo C, Jiang Y, Jin L, Xu K, Chen X. Plasma proteomic profiles reveal proteins and three characteristic patterns associated with osteoporosis: A prospective cohort study. J Adv Res 2024:S2090-1232(24)00474-0. [PMID: 39490735 DOI: 10.1016/j.jare.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Exploration of plasma proteins associated with osteoporosis can offer insights into its pathological development, identify novel biomarkers for screening high-risk populations, and facilitate the discovery of effective therapeutic targets. OBJECTIVES The present study aimed to identify potential proteins associated with osteoporosis and to explore the underlying mechanisms from a proteomic perspective. METHODS The study included 42,325 participants without osteoporosis in the UK Biobank (UKB), of whom 1,477 developed osteoporosis during the follow-up. We used Cox regression and Mendelian randomization analysis to examine the association between plasma proteins and osteoporosis. Machine learning was utilized to explore proteins with strong predictive power for osteoporosis risk. RESULTS Of 2,919 plasma proteins, we identified 134 significantly associated with osteoporosis, with sclerostin (SOST), adiponectin (ADIPOQ), and creatine kinase B-type (CKB) exhibiting strong associations. Twelve of these proteins showed significant associations with bone mineral density (BMD) T-score at the femoral neck, lumbar spine, and total body. Mendelian randomization further supported causal relationships between 17 plasma proteins and osteoporosis. Moreover, follitropin subunit beta (FSHB), SOST, and ADIPOQ demonstrated high importance in predictive modeling. Utilizing a predictive model built with 10 proteins, we achieved relatively accurate prediction of osteoporosis onset up to 5 years in advance (AUC = 0.803). Finally, we identified three osteoporosis-related protein modules associated with immunity, lipid metabolism, and follicle-stimulating hormone (FSH) regulation from a network perspective, elucidating their mediating roles between various risk factors (smoking, sleep, physical activity, polygenic risk score (PRS), and menopause) and osteoporosis. CONCLUSION We identified several proteins associated with osteoporosis and highlighted the role of plasma proteins in influencing its progression through three primary pathways: immunity, lipid metabolism, and FSH regulation. This provides further insights into the distinct molecular patterns and pathogenesis of bone loss and may contribute to strengthening early diagnosis and long-term monitoring of the condition.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jincheng Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiacheng Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
4
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
5
|
Yu B, Gao Q, Sheng S, Zhou F, Geng Z, Wei Y, Zhang H, Hu Y, Wang S, Huang J, Li M, Su J. Smart osteoclasts targeted nanomedicine based on amorphous CaCO 3 for effective osteoporosis reversal. J Nanobiotechnology 2024; 22:153. [PMID: 38580995 PMCID: PMC10996086 DOI: 10.1186/s12951-024-02412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Osteoporosis is characterized by an imbalance in bone homeostasis, resulting in the excessive dissolution of bone minerals due to the acidified microenvironment mediated by overactive osteoclasts. Oroxylin A (ORO), a natural flavonoid, has shown potential in reversing osteoporosis by inhibiting osteoclast-mediated bone resorption. The limited water solubility and lack of targeting specificity hinder the effective accumulation of Oroxylin A within the pathological environment of osteoporosis. RESULTS Osteoclasts' microenvironment-responsive nanoparticles are prepared by incorporating Oroxylin A with amorphous calcium carbonate (ACC) and coated with glutamic acid hexapeptide-modified phospholipids, aiming at reinforcing the drug delivery efficiency as well as therapeutic effect. The obtained smart nanoparticles, coined as OAPLG, could instantly neutralize acid and release Oroxylin A in the extracellular microenvironment of osteoclasts. The combination of Oroxylin A and ACC synergistically inhibits osteoclast formation and activity, leading to a significant reversal of systemic bone loss in the ovariectomized mice model. CONCLUSION The work highlights an intelligent nanoplatform based on ACC for spatiotemporally controlled release of lipophilic drugs, and illustrates prominent therapeutic promise against osteoporosis.
Collapse
Affiliation(s)
- Biao Yu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Second Affiliated Hospital, Shanghai University, Wenzhou, 325000, China
| | - Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China.
| | - Jianping Huang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Second Affiliated Hospital, Shanghai University, Wenzhou, 325000, China.
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, 325000, China.
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
El-Mahroky SM, Nageeb MM, Hemead DA, Abd Allah EG. Agomelatine alleviates steroid-induced osteoporosis by targeting SIRT1/RANKL/FOXO1/OPG signalling in rats. Clin Exp Pharmacol Physiol 2024; 51:e13832. [PMID: 37950568 DOI: 10.1111/1440-1681.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
One of the major contributors to secondary osteoporosis is long-term glucocorticoid usage. Clinically used antidepressant agomelatine also has anti-inflammatory properties. Our research aimed to inspect the probable defensive effect of agomelatine against steroid-promoted osteoporosis. There were four groups of rats; group I had saline as a negative control; rats of group II had dexamethasone (0.6 mg/kg, s.c.), twice weekly for 12 weeks; rats of group III had agomelatine (40 mg/kg/day, orally), as a positive control, daily for 12 weeks; and rats of group IV had dexamethasone + agomelatine in the same previous doses combined for 12 weeks. Finally, biochemical as well as histopathological changes were evaluated and dexamethasone treatment caused osteoporosis, as evidenced by discontinuous thin cancellous bone trabeculae, minor fissures and fractures, irregular eroded endosteal surface with elevated alkaline phosphate, tartarate resistant acid phosphate (TRACP) and osteocalcin levels. Osteoprotegerin (OPG), calcium, and phosphorus levels decreased with disturbed receptor activator of nuclear factor κ B ligand (RANKL), forkhead box O1 (FOXO1), and silent information regulator 1 (SIRT1) protein expression. However, treatment with agomelatine restored the normal levels of biochemical parameters to a great extent, supported by SIRT activation with an improvement in histopathological changes. Here, we concluded that agomelatine ameliorates steroid-induced osteoporosis through a SIRT1/RANKL/FOXO1/OPG-dependent pathway.
Collapse
Affiliation(s)
- Samaa M El-Mahroky
- Lecturer of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahitab M Nageeb
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Hemead
- Lecturer of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Enas G Abd Allah
- Lecturer of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Zheng Z, Wang Y, Guo M, Guo J, Cui J, Zhu W, Cheng W, Liu Y, Cui H. Estradiol is a key candidate for treating Ankylosing Spondylolisthesis with Traditional Chinese Medicine. Comput Biol Med 2023; 164:107206. [PMID: 37515871 DOI: 10.1016/j.compbiomed.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/31/2023]
Abstract
Some Traditional Chinese Medicine (TCM) has shown anti-inflammatory and immunosuppressive effects on Ankylosing Spondylitis (AS) treatment. Wan Bikang (WBK) and Wan Biqing (WBQ) are two traditional empirical formulas for AS. However, the mechanism of their effects on AS is largely unknown. This study deciphered the underlying common molecular mechanisms of these TCM treatments for AS. The ultra-high-performance liquid chromatography-triple/time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) assays were employed to detect herbal ingredients. Target proteins of herbal ingredients were identified by ChEMBL Database. To infer the relationships between ingredients and AS-related proteins, network pharmacology was employed. Protein-protein interaction (PPI) network and core target analyses were carried out with tools Cytoscape and STRING. To find out the molecular basis and target of AS, molecular docking and an in vitro experiment were also conducted. It is found that estradiol may participate in the treatment of AS via the inhibition of inflammatory factors, and Estrogen Receptor 1 (ESR1) appears to be a key target. This research offers insight into the therapeutic mechanism of TCM formulas for AS and furthers our understanding of TCM pharmacology.
Collapse
Affiliation(s)
- Zhenyu Zheng
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Yidi Wang
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Malong Guo
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Jiayi Guo
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Jiaxuan Cui
- Zhengzhou Foreign Language Middle School. Zhengzhou, Henan, China
| | - Wenxiao Zhu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Weidong Cheng
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Yonghui Liu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China
| | - Hongxun Cui
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, Henan, China.
| |
Collapse
|
8
|
Zastulka A, Clichici S, Tomoaia-Cotisel M, Mocanu A, Roman C, Olteanu CD, Culic B, Mocan T. Recent Trends in Hydroxyapatite Supplementation for Osteoregenerative Purposes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1303. [PMID: 36770309 PMCID: PMC9919169 DOI: 10.3390/ma16031303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bone regeneration has gained attention in the biomedical field, which has led to the development of materials and synthesis methods meant to improve osseointegration and cellular bone activity. The properties of hydroxyapatite, a type of calcium phosphate, have been researched to determine its advantages for bone tissue engineering, particularly its biocompatibility and ability to interact with bone cells. Recently, the advantages of utilizing nanomolecules of hydroxyapatite, combined with various substances, in order to enhance and combine their characteristics, have been reported in the literature. This review will outline the cellular and molecular roles of hydroxypatite, its interactions with bone cells, and its nano-combinations with various ions and natural products and their effects on bone growth, development, and bone repair.
Collapse
Affiliation(s)
- Ana Zastulka
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Simona Clichici
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
- Academy of Romanian Scientists, 3 Ilfov Str., 050044 Bucharest, Romania
| | - Aurora Mocanu
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Research Center in Physical Chemistry, Babes-Bolyai University of Cluj-Napoca, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Cecilia Roman
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400296 Cluj-Napoca, Romania
| | - Cristian-Doru Olteanu
- Orthodontic Department, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Street, 400083 Cluj-Napoca, Romania
| | - Bogdan Culic
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Street, 400012 Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology Cluj-Napoca, 5 Constanta Street, 400158 Cluj-Napoca, Romania
| |
Collapse
|