1
|
Rosato BE, D'Onofrio V, Marra R, Nostroso A, Esposito FM, Iscaro A, Lasorsa VA, Capasso M, Iolascon A, Russo R, Andolfo I. RAS signaling pathway is essential in regulating PIEZO1-mediated hepatic iron overload in dehydrated hereditary stomatocytosis. Am J Hematol 2025; 100:52-65. [PMID: 39558179 PMCID: PMC11625994 DOI: 10.1002/ajh.27523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
PIEZO1 encodes a mechanoreceptor, a cation channel activated by mechanical stimuli. Gain-of-function (GoF) variants in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS), or xerocytosis, a pleiotropic syndrome characterized by anemia and iron overload. DHS patients develop hepatic iron overload independent of the degree of anemia and transfusion regimen. PIEZO1-GoF variants suppress hepcidin expression in both hepatic cellular model and constitutive/macrophage-specific Piezo1-GoF mice model. Therefore, PIEZO1-GoF variants regulate hepcidin expression by a crosstalk between hepatocytes (HCs) and macrophages with a still unknown mechanism. Transcriptomic and proteomics analysis in the human hepatic Hep3B cells engineered for the PIEZO1-R2456H variant (PIEZO1-KI) revealed alterations in the actin cytoskeleton regulation, MAPK cascade, and RAS signaling. These changes mainly occur through a novel key regulator, RRAS, whose protein and mRNA levels are regulated by PIEZO1 activation and inhibition. This regulation was further confirmed in C57BL/6 mouse primary HCs treated with Yoda-1 and/or GsMTx-4. Indeed, PIEZO1-KI cells exhibited hyper-activated RAS-GTPase activity that is rescued by PIEZO1 inhibition, restoring expression of the hepcidin gene HAMP. A negative correlation between RAS signaling and HAMP regulation was confirmed by inhibiting RAS-GTPase and MEK1-2 activity. Conversely, rescued HAMP gene expression requires downregulation of RRAS, confirming negative feedback between RAS-MAPK and BMP/SMADs pathways in HAMP regulation. We demonstrated that PIEZO1-GoF variants influence the actin cytoskeleton organization by activating the hepatic RAS signaling system. Understanding the role of RAS signaling in regulating iron metabolism could pave the way for new therapeutic strategies in DHS and other conditions characterized by iron overload.
Collapse
Affiliation(s)
- Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vanessa D'Onofrio
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Antonella Nostroso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Federica Maria Esposito
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Anthony Iscaro
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies“Federico II” University of NaplesNaplesItaly
- CEINGE, Biotecnologie Avanzate, Franco SalvatoreNaplesItaly
| |
Collapse
|
2
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Zhang Y, Xing M, Meng F, Zhu L, Huang Q, Ma T, Fang H, Gu X, Huang S, Wu X, Lv G, Guo J, Wu L, Liu X, Chen Z. The mechanical mechanism of angiotensin II induced activation of hepatic stellate cells promoting portal hypertension. Eur J Cell Biol 2024; 103:151427. [PMID: 38820882 DOI: 10.1016/j.ejcb.2024.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
In the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly. Further investigation revealed that the Rho/ROCK signaling pathway regulated MF polymerization and SF assembly by facilitating the phosphorylation of cofilin and MLC, while Ca2+ chiefly governed SF assembly via MLC. Inhibiting α-SMA-MF-SF assembly changed Ang II-induced cell contraction, YAP nuclear translocation, and COL1A1 expression, findings corroborated in cirrhotic mice models. Overall, our study offers insights into mitigating IHVR and PH through cell mechanics, heralding potential breakthroughs.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mulan Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fansheng Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhu
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingchuan Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huihua Fang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xujing Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suzhou Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyu Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaohong Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Wu Z, Tang Z, Zheng Z, Tan S. A novel trauma induced urethral stricture in rat model. Sci Rep 2024; 14:6325. [PMID: 38491041 PMCID: PMC10943079 DOI: 10.1038/s41598-024-55408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
Urethral stricture (US) is a longstanding disease, while there has not existed a suitable animal model to mimic the condition. We aimed to establish a trauma-induced US animal model to simulate this clinical scenario. A total of 30 rats were equally distributed into two groups, sham and US group. All rats were anesthetized with isoflurane and undergone cystostomy. In the US group, a 2 mm incision was made in the urethra and sutured to induce US. The sham group only make a skin incision on the ventral side of the anterior urethra. 4 weeks later, ultrasound and cystourethrography were performed to evaluate the degree of urethral stricture, pathological examinations were carried out to evaluate the degree of fibrosis. Urodynamic evaluation and mechanical tissue testing were performed to evaluate the bladder function and urethral tissue stiffness. The results showed that the urethral mucosa was disrupted and urethral lumen was stenosed in the US group. Additionally, the US group showed elevated bladder pressure, prolonged micturition intervals and increased tissue stiffness. In conclusion, the rat urethral stricture model induced by trauma provides a closer representation of the real clinical scenario. This model will significantly contribute to advancing research on the mechanisms underlying traumatic urethral stricture.
Collapse
Affiliation(s)
- Ziqiang Wu
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China
| | - Zhihuan Zheng
- Department of Urology, Xiangya Hospital of Central South University, Changsha, People's Republic of China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China.
| | - Shuo Tan
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, People's Republic of China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, People's Republic of China.
| |
Collapse
|
7
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
8
|
Wells RG. Liver fibrosis: Our evolving understanding. Clin Liver Dis (Hoboken) 2024; 23:e0243. [PMID: 38961878 PMCID: PMC11221862 DOI: 10.1097/cld.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 07/05/2024] Open
|