1
|
Bădescu-Singureanu CC, Nizovtsev AS, Pecoraro VL, Petoud S, Eliseeva SV. Enabling Visible Light Sensitization of Yb III, Nd III and Er III in Dimeric Ln III/Ga III Metallacrowns through Functionalization with Ru II Complexes for NIR-II Multiplex Imaging. Angew Chem Int Ed Engl 2024:e202416101. [PMID: 39288073 DOI: 10.1002/anie.202416101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Multiplex imaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides exciting opportunities for more precise understanding of biological processes and more accurate diagnosis of diseases by enabling real-time acquisition of images with improved contrast and spatial resolution in deeper tissues. Today, the number of imaging agents suitable for this modality remains very scarce. In this work, we have synthesized and fully characterized, including theoretical calculations, a series of dimeric LnIII/GaIII metallacrowns bearing RuII polypyridyl complexes, LnRu-3 (Ln=YIII, YbIII, NdIII, ErIII). Relaxed structures of YRu-3 in the ground and the excited electronic states have been calculated using dispersion-corrected density functional theory methods. Detailed photophysical studies of LnRu-3 have demonstrated that characteristic emission signals of YbIII, NdIII and ErIII in the NIR-II range can be sensitized upon excitation in the visible range through RuII-centered metal-to-ligand charge transfer (MLCT) states. We have also showed that these NIR-II signals are unambiguously detected in an imaging experiment using capillaries and biological tissue-mimicking phantoms. This work opens unprecedented perspectives for NIR-II multiplex imaging using LnIII-based molecular compounds.
Collapse
Affiliation(s)
- Codruţa C Bădescu-Singureanu
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans, 45071, France
| | - Anton S Nizovtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Academician Lavrentiev Avenue, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia
| | - Vincent L Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan, 48109-1055, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans, 45071, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans, 45071, France
| |
Collapse
|
2
|
Li D, Shi T, Xiao Y, Wu C. Sensorless adaptive optics in the second near-infrared window for deep vascular imaging in vivo. OPTICS LETTERS 2024; 49:4002-4005. [PMID: 39008762 DOI: 10.1364/ol.528634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024]
Abstract
We have experimentally validated the use of sensorless adaptive optics (AO) to enhance laser scanning confocal microscopy in the second near-infrared (NIR II) spectral range, termed as AO-NIR II confocal microscopy. This approach harnesses a NIR II fluorophore, excited by an 808 nm wavelength and emitting beyond 1000 nm, to visualize intricate structures in deep brain tissues with the intact skull. By leveraging the reduced scattering and aberrations in the NIR II spectrum, we successfully captured a three-dimensional (3D) vascular structure map extending 310 µm beneath the skull. AO typically boosts the fluorescence signal by approximately 2-3 times, leading to a superior contrast and diminished smearing effects. Consequently, small blood vessels at various depths can be clearly visualized, which might otherwise remain undetectable without AO corrections.
Collapse
|
3
|
Zhang H, Wang X, Zhang Y, Ma J, Qi S, Du J, Jin C. Hyaluronic acid modified indocyanine green nanoparticles: a novel targeted strategy for NIR-II fluorescence lymphatic imaging. Front Chem 2024; 12:1435627. [PMID: 39021390 PMCID: PMC11251975 DOI: 10.3389/fchem.2024.1435627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The lymphatic system, alongside blood circulation, is crucial for maintaining bodily equilibrium and immune surveillance. Despite its importance, lymphatic imaging techniques lag behind those for blood circulation. Fluorescence imaging, particularly in the near-infrared-II (NIR-II) region, offers promising capabilities with centimeter-scale tissue penetration and micron-scale spatial resolution, sparking interest in visualizing the lymphatic system. Although indocyanine green (ICG) has been approved by the Food and Drug Administration (FDA) for use as a near-infrared-I (NIR-I) region fluorescent dye, its limitations include shallow penetration depth and low signal-to-noise ratio. Research suggests that ICG's fluorescence emission tail in the second near-infrared window holds potential for high-quality NIR-II imaging. However, challenges like short circulation half-life and concentration-dependent aggregation hinder its wider application. Here we developed HA@ICG nanoparticles (NPs), a superior ICG-based NIR-II fluorescent probe with excellent biocompatibility, prolonging in vivo imaging, and enhancing photostability compared to ICG alone. Leveraging LYVE-1, a prominent lymphatic endothelial cell receptor that binds specifically to hyaluronic acid (HA), our nanoprobes exhibit exceptional performance in targeting lymphatic system imaging. Moreover, our findings demonstrate the capability of HA@ICG NPs for capillary imaging, offering a means to assess local microcirculatory blood supply. These compelling results underscore the promising potential of HA@ICG NPs for achieving high-resolution bioimaging of nanomedicines in the NIR-II window.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Ultrasound, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yundong Zhang
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinli Ma
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaolong Qi
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jianshi Du
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
5
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|