1
|
Via Reque Cortes DDP, Drueke TB, Moysés RMA. Persistent uncertainties in optimal treatment approaches of secondary hyperparathyroidism and hyperphosphatemia in patients with chronic kidney disease. Curr Osteoporos Rep 2024; 22:441-457. [PMID: 39158828 DOI: 10.1007/s11914-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review is a critical analysis of treatment results obtained in clinical trials conducted in patients with chronic kidney disease (CKD) and secondary hyperparathyroidism (SHPT), hyperphosphatemia, or both. RECENT FINDINGS Patients with CKD have a high mortality rate. The disorder of mineral and bone metabolism (CKD-MBD), which is commonly present in these patients, is associated with adverse outcomes, including cardiovascular events and mortality. Clinical trials aimed at improving these outcomes by modifying CKD-MBD associated factors have most often resulted in disappointing results. The complexity of CKD-MBD, where many players are closely interconnected, might explain these negative findings. We first present an historical perspective of current knowledge in the field of CKD-MBD and then examine potential flaws of past and ongoing clinical trials targeting SHPT and hyperphosphatemia respectively in patients with CKD.
Collapse
Affiliation(s)
| | - Tilman B Drueke
- Inserm Unit 1018, CESP, Hôpital Paul Brousse, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Team 5, Villejuif, France
| | - Rosa Maria Affonso Moysés
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina da USP, Nephrology Division, LIM 16, São Paulo, Brazil.
| |
Collapse
|
2
|
Abdulrahim HA, Odetayo AF, Owootori EA, Bulus JD, Jimoh FB, Gabriel EO, Odiete IF, Olayaki LA. Metformin and vitamin D combination therapy ameliorates type 2 diabetes mellitus-induced renal injury in male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03478-w. [PMID: 39347801 DOI: 10.1007/s00210-024-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Diabetic kidney disease is a major microvascular diabetes mellitus (DM) complication clinically associated with a gradual renal function decline. Although metformin is a common drug for managing DM, however, monotherapy treatment with any antidiabetic drug will necessitate dosage increment since type 2 DM (T2DM) deteriorates over time due to the increasing pancreatic β-cell dysfunction and will eventually require a combination therapy approach with another antidiabetic medication. Vitamin D is a food supplement that has been proven to have antidiabetic and reno-protective activities. Hence, we explore the combination of vitamin D and metformin on T2DM-induced renal dysfunction. Thirty male Wistar rats were randomized into five (5) groups: control, diabetes untreated, diabetics treated with metformin, vitamin D, and vitamin D + metformin. Vitamin D and metformin significantly reversed DM-induced hyperglycemia, electrolyte imbalance, and dyslipidemia. Also, vitamin D and metformin reversed T2DM-induced increase in serum creatinine and urea and renal lactate, LDH, and oxido-inflammatory response. These observed alterations were accompanied by an increase in proton pump activities and modulation of Nrf2/Nf-κB and XO/UA signaling. This study revealed that vitamin D and/or metformin ameliorated T2DM-induced renal injury.
Collapse
Affiliation(s)
| | - Adeyemi Fatai Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila-Orangun, Nigeria.
| | | | | | | | | | | | | |
Collapse
|
3
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Li YH, Jiang ZX, Xu Q, Jin TT, Huang JF, Luan X, Li C, Chen XY, Wong KH, Dong XL, Sun XR. Inhibition of calcium-sensing receptor by its antagonist promotes gastrointestinal motility in a Parkinson's disease mouse model. Biomed Pharmacother 2024; 174:116518. [PMID: 38565057 DOI: 10.1016/j.biopha.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.
Collapse
Affiliation(s)
- Yu-Hang Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Zhong-Xin Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Xu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ting-Ting Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Department of Pathology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jin-Fang Huang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiao Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chong Li
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiao-Li Dong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiang-Rong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|