Clarke A, Farr CV, El-Kasaby A, Szöllősi D, Freissmuth M, Sucic S, Stockner T. Probing binding and occlusion of substrate in the human creatine transporter-1 by computation and mutagenesis.
Protein Sci 2024;
33:e4842. [PMID:
38032325 PMCID:
PMC10751730 DOI:
10.1002/pro.4842]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.
Collapse