1
|
Kaiglová A, Hockicková P, Bárdyová Z, Reháková R, Melnikov K, Kucharíková S. The chemotactic response of Caenorhabditis elegans represents a promising tool for the early detection of cancer. Discov Oncol 2024; 15:817. [PMID: 39707061 DOI: 10.1007/s12672-024-01721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
The nematode Caenorhabditis elegans, with its highly sensitive olfactory system, has emerged as a promising tool for testing chemotaxis. In the field of cancer diagnostics, there is a growing interest in the development of non-invasive screening methods for the detection of volatile organic compounds in a patient's urine. The objective of this study was to contribute to the existing body of knowledge by evaluating the ability of a Caenorhabditis elegans-based chemotaxis assay to discriminate between urine samples from healthy individuals and patients diagnosed with breast or colon cancer. Following synchronization of the developmental stages of C. elegans, nematodes were exposed to the urine of cancer patients and healthy individuals. Subsequently, chemotactic indices were calculated for each urine sample. Our results demonstrated a statistically significant difference in the chemotactic response of C. elegans to urine samples from cancer patients compared to healthy volunteers (p < 0.001). Furthermore, the test demonstrated promising diagnostic utility, with a sensitivity of 96%, a specificity of 62%, and a detection rate of 73% among patients with breast cancer and a sensitivity of 100%, a specificity of 62%, and a detection rate of 72% among those with colon cancer. Our findings expand on previous observations, confirming the remarkable sensitivity of C. elegans hermaphrodites to discriminating cancer-related volatile organic compounds in urine samples.
Collapse
Affiliation(s)
- Alžbeta Kaiglová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Patrícia Hockicková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Zuzana Bárdyová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Radka Reháková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Kamila Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia
| | - Soňa Kucharíková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné Námestie 1, 91843, Trnava, Slovakia.
| |
Collapse
|
2
|
Werner R, Crosbie R, Dorney M, Connolly A, Collins D, Hand CK, Burke L. Implementation of an ISO 15189 accredited next generation sequencing service for cell-free total nucleic acid (cfTNA) analysis to facilitate driver mutation reporting in blood: the experience of a clinical diagnostic laboratory. J Clin Pathol 2024:jcp-2024-209514. [PMID: 38914446 DOI: 10.1136/jcp-2024-209514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
AIMS Next generation sequencing (NGS) on tumour tissue is integral to the delivery of personalised medicine and targeted therapy. NGS on liquid biopsy, a much less invasive technology, is an emerging clinical tool that has rapidly expanded clinical utility. Gene mutations in cell-free total nucleic acids (cfTNA) circulating in the blood are representative of whole tumour biology and can reveal different mutations from different tumour sites, thus addressing tumour heterogeneity challenges. METHODS The novel Ion Torrent Genexus NGS system with automated sample preparation, onboard library preparation, templating, sequencing, data analysis and Oncomine Reporter software was used. cfTNA extracted from plasma was verified with the targeted pan-cancer (~50 genes) Oncomine Precision Assay (OPA). Assessment criteria included analytical sensitivity, specificity, limits of detection (LOD), accuracy, repeatability, reproducibility and the establishment of performance metrics. RESULTS An ISO 15189 accredited, minimally invasive cfTNA NGS diagnostic service has been implemented. High sensitivity (>83%) and specificity between plasma and tissue were observed. A sequencing LOD of 1.2% was achieved when the depth of coverage was >22 000×. A reduction (>68%) in turnaround time (TAT) of liquid biopsy results was achieved: 5 days TAT for in-house analysis from sample receipt to a final report issued to oncologists as compared with >15 days from reference laboratories. CONCLUSION Tumour-derived somatic variants can now be reliably assessed from plasma to provide minimally invasive tumour profiling. Successful implementation of this accredited service resulted in:Appropriate molecular profiling of patients where tumour tissue is unavailable or inaccessible.Rapid TAT of plasma NGS results.
Collapse
Affiliation(s)
- Reiltin Werner
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Ruth Crosbie
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Mairead Dorney
- Pathology Department, Cork University Hospital, Cork, Ireland
| | - Amy Connolly
- Pathology Department, Cork University Hospital, Cork, Ireland
| | | | - Collette K Hand
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Louise Burke
- Pathology Department, Cork University Hospital, Cork, Ireland
- Department of Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| |
Collapse
|
3
|
Tenchov R, Sapra AK, Sasso J, Ralhan K, Tummala A, Azoulay N, Zhou QA. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol Transl Sci 2024; 7:586-613. [PMID: 38481702 PMCID: PMC10928905 DOI: 10.1021/acsptsci.3c00346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 01/23/2024] [Indexed: 01/04/2025]
Abstract
Cancer is one of the leading causes of death worldwide. Early cancer detection is critical because it can significantly improve treatment outcomes, thus saving lives, reducing suffering, and lessening psychological and economic burdens. Cancer biomarkers provide varied information about cancer, from early detection of malignancy to decisions on treatment and subsequent monitoring. A large variety of molecular, histologic, radiographic, or physiological entities or features are among the common types of cancer biomarkers. Sizeable recent methodological progress and insights have promoted significant developments in the field of early cancer detection biomarkers. Here we provide an overview of recent advances in the knowledge related to biomolecules and cellular entities used for early cancer detection. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, as well as from the biomarker datasets at Excelra, and analyze the publication landscape of recent research. We also discuss the evolution of key concepts and cancer biomarkers development pipelines, with a particular focus on pancreatic and liver cancers, which are known to be remarkably difficult to detect early and to have particularly high morbidity and mortality. The objective of the paper is to provide a broad overview of the evolving landscape of current knowledge on cancer biomarkers and to outline challenges and evaluate growth opportunities, in order to further efforts in solving the problems that remain. The merit of this review stems from the extensive, wide-ranging coverage of the most up-to-date scientific information, allowing unique, unmatched breadth of landscape analysis and in-depth insights.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Aparna K. Sapra
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | - Janet Sasso
- CAS,
a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Anusha Tummala
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | - Norman Azoulay
- Excelra
Knowledge Solutions Pvt. Ltd., Hyderabad-500039, India
| | | |
Collapse
|
4
|
Franzi S, Seresini G, Borella P, Raviele PR, Bonitta G, Croci GA, Bareggi C, Tosi D, Nosotti M, Tabano S. Liquid biopsy in non-small cell lung cancer: a meta-analysis of state-of-the-art and future perspectives. Front Genet 2023; 14:1254839. [PMID: 38116291 PMCID: PMC10728669 DOI: 10.3389/fgene.2023.1254839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: To date, tissue biopsy represents the gold standard for characterizing non-small-cell lung cancer (NSCLC), however, the complex architecture of the disease has introduced the need for new investigative approaches, such as liquid biopsy. Indeed, DNA analyzed in liquid biopsy is much more representative of tumour heterogeneity. Materials and methods: We performed a meta-analysis of 17 selected papers, to attest to the diagnostic performance of liquid biopsy in identifying EGFR mutations in NSCLC. Results: In the overall studies, we found a sensitivity of 0.59, specificity of 0.96 and diagnostic odds ratio of 24,69. Since we noticed a high heterogeneity among different papers, we also performed the meta-analysis in separate subsets of papers, divided by 1) stage of disease, 2) experimental design and 3) method of mutation detection. Liquid biopsy has the highest sensitivity/specificity in high-stage tumours, and prospective studies are more reliable than retrospective ones in terms of sensitivity and specificity, both NGS and PCR-based techniques can be used to detect tumour DNA in liquid biopsy. Discussion: Overall, liquid biopsy has the potential to help the management of NSCLC, but at present the non-homogeneous literature data, lack of optimal detection methods, together with relatively high costs make its applicability in routine diagnostics still challenging.
Collapse
Affiliation(s)
- Sara Franzi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriele Seresini
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Borella
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Gianluca Bonitta
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgio Alberto Croci
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Bareggi
- Medical Oncology Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Tosi
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Nosotti
- Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Silvia Tabano
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|