1
|
Shrestha A, Gaustad AH, Øiaas JB, Kommisrud E, van Son M, Nordborg A, Alm-Kristiansen AH. A metabolomic study uncovering key amino acids and amines in Duroc boar semen as biomarkers of sexual maturity. Anim Reprod Sci 2025; 275:107800. [PMID: 40007344 DOI: 10.1016/j.anireprosci.2025.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Metabolomic analysis of boar semen associated with sexual maturation is essential for improving fertility management and breeding, with amino acids and amines playing key roles in the reproductive process. This study aimed to explore changes in amino acids and amines in boar spermatozoa and seminal plasma during puberty to sexual maturity and identify potential biomarkers of sexual maturity. Semen was collected from the same 15 Duroc boars over time at approximately 7 months (Age 1), 8.5 months (Age 2), and 10 months (Age 3). Liquid chromatography-mass spectrometry was used to analyse amino acids and amines in spermatozoa and seminal plasma separately. Multivariate analysis (PLS-DA) revealed pronounced age-dependent changes in amino acids and amines in spermatozoa between Age 1 and Age 3, and more subtle shifts in seminal plasma. Univariate analysis (Repeated measure ANOVA/Friedman) revealed that glutamate and taurine had significant pairwise differences in seminal plasma (P < 0.05). In sperm, 15 amino acids (glutamate, alanine, aspartate, choline, taurine, histidine, methionine, tryptophan, leucine, cystine, tyrosine, arginine, lysine, valine and glycine) exhibited significant pairwise differences (P < 0.05). VIP scoring (>1.5) prioritised glutamate, alanine, aspartate, and choline as key contributors to the variations and pathway analysis implicated alanine, aspartate and glutamate metabolism, and histidine metabolism linked to sexual maturity. Our study highlights metabolic changes during sexual maturation, identifying potential biomarkers for assessing reproductive maturity. These findings are initial steps toward optimising younger boars' usage in breeding, enhancing genetic gain, and reducing costs associated with their non-productive days at AI centres.
Collapse
Affiliation(s)
- Asmita Shrestha
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway
| | | | - Janne Beate Øiaas
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Elisabeth Kommisrud
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Anne Hege Alm-Kristiansen
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, University of Inland Norway, Hamar, Norway.
| |
Collapse
|
2
|
Hassan M, Flanagan TW, Eshaq AM, Altamimi OK, Altalag H, Alsharif M, Alshammari N, Alkhalidi T, Boulifa A, El Jamal SM, Haikel Y, Megahed M. Reduction of Prostate Cancer Risk: Role of Frequent Ejaculation-Associated Mechanisms. Cancers (Basel) 2025; 17:843. [PMID: 40075690 PMCID: PMC11898507 DOI: 10.3390/cancers17050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) accounts for roughly 15% of diagnosed cancers among men, with disease incidence increasing worldwide. Age, family history and ethnicity, diet, physical activity, and chemoprevention all play a role in reducing PCa risk. The prostate is an exocrine gland that is characterized by its multi-functionality, being involved in reproductive aspects such as male ejaculation and orgasmic ecstasy, as well as playing key roles in the regulation of local and systemic concentrations of 5α-dihydrotestosterone. The increase in androgen receptors at the ventral prostate is the first elevated response induced by copulation. The regulation of prostate growth and function is mediated by an androgen-dependent mechanism. Binding 5-DHT to androgen receptors (AR) results in the formation of a 5α-DHT:AR complex. The interaction of the 5α-DHT:AR complex with the specific DNA enhancer element of androgen-regulated genes leads to the regulation of androgen-specific target genes to maintain prostate homeostasis. Consequently, ejaculation may play a significant role in the reduction of PCa risk. Thus, frequent ejaculation in the absence of risky sexual behavior is a possible approach for the prevention of PCa. In this review, we provide an insight into possible mechanisms regulating the impact of frequent ejaculation on reducing PCa risk.
Collapse
Affiliation(s)
- Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulaziz M. Eshaq
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Osama K. Altamimi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Hassan Altalag
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Nouf Alshammari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Tamadhir Alkhalidi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Abdelhadi Boulifa
- Berlin Institute of Health, Charité University Hospital, 10117 Berlin, Germany;
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Charité-University Hospital, 10117 Berlin, Germany
| | - Siraj M. El Jamal
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Li C, Lv C, Larbi A, Liang J, Yang Q, Wu G, Quan G. Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles. Int J Mol Sci 2024; 25:9112. [PMID: 39201798 PMCID: PMC11354876 DOI: 10.3390/ijms25169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen-thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Allai Larbi
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, El Jadida 24000, Morocco;
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Qige Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming 650500, China;
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|