1
|
Lakhssassi K, Sarto MP, Marín B, Lahoz B, Folch J, Alabart JL, Serrano M, Calvo JH. Exploring differentially expressed genes in hypothalamic, pars tuberalis and pineal gland transcriptomes in different sexual behavior phenotypes in rams using RNA-Seq. J Anim Sci 2023; 101:skac365. [PMID: 36331073 PMCID: PMC9833037 DOI: 10.1093/jas/skac365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Reproductive seasonality is a limiting factor in sheep production. Sexual behavior is a key element in reproductive efficiency, and this function is regulated by the hypothalamus-pituitary-gonadal (HPG) axis. To understand the mechanisms of sexual behavior, transcriptomic sequencing technology was used to identify differentially expressed genes (DEGs) in the hypothalamus (HT), pars tuberalis (PT) and pineal gland (PG) in Rasa Aragonesa rams with different sexual behavior. Bioinformatics analysis of the 16,401 identified genes by RNA-Seq revealed 103 and 12 DEGs in the HT and the PG, respectively, at a false discovery rate (FDR) of 5% with an absolute value of expression ≥ 1 (log2FC). However, no DEGs were found in the PT. Functional annotation and pathway enrichment analysis showed that DEGs of HT were enriched mainly in neuroactive ligand-receptor interactions and signaling pathways, including notable candidate genes such as MTNR1A, CHRNA2, FSHB, LHB, GNRHR, AVP, PRL, PDYN, CGA, GABRD, and TSHB, which play a crucial role in sexual behavior. The GnRH and cAMP signaling pathways were also highlighted. In addition, gene set enrichment analysis (GSEA) identified potential pathways, dominated mainly by biological process category, that could be responsible for the differences in sexual behavior observed in rams. The intracellular protein transport and pattern specification process were enriched within the PT and the transcription factor binding and protein ubiquitination pathways for the PG. Thus, these pathways together may play an important role in the regulation of the sexual behavior in Rasa Aragonesa rams through the hypothalamic-pituitary-gonadal axis. The validation of 5 DEGs using reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed expression patterns like the found with RNA-Seq. Overall, these results contribute to understanding the genomic basis of sexual behavior in rams. Our study demonstrates that multiple networks and pathways orchestrate sexual behavior in sheep.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- INRA Instituts, 6356 Rabat, Morocco
| | - María Pilar Sarto
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Belén Marín
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Medicine, University of Zaragoza, 50018 Zaragoza, Spain
| | - Belén Lahoz
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Folch
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Luis Alabart
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Malena Serrano
- Department of Animal Breeding and Genetics, INIA-CSIC, 28040 Madrid, Spain
| | - Jorge Hugo Calvo
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
2
|
Vats S, Galli T. Role of SNAREs in Unconventional Secretion-Focus on the VAMP7-Dependent Secretion. Front Cell Dev Biol 2022; 10:884020. [PMID: 35784483 PMCID: PMC9244844 DOI: 10.3389/fcell.2022.884020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Intracellular membrane protein trafficking is crucial for both normal cellular physiology and cell-cell communication. The conventional secretory route follows transport from the Endoplasmic reticulum (ER) to the plasma membrane via the Golgi apparatus. Alternative modes of secretion which can bypass the need for passage through the Golgi apparatus have been collectively termed as Unconventional protein secretion (UPS). UPS can comprise of cargo without a signal peptide or proteins which escape the Golgi in spite of entering the ER. UPS has been classified further depending on the mode of transport. Type I and Type II unconventional secretion are non-vesicular and non-SNARE protein dependent whereas Type III and Type IV dependent on vesicles and on SNARE proteins. In this review, we focus on the Type III UPS which involves the import of cytoplasmic proteins in membrane carriers of autophagosomal/endosomal origin and release in the extracellular space following SNARE-dependent intracellular membrane fusion. We discuss the role of vesicular SNAREs with a strong focus on VAMP7, a vesicular SNARE involved in exosome, lysosome and autophagy mediated secretion. We further extend our discussion to the role of unconventional secretion in health and disease with emphasis on cancer and neurodegeneration.
Collapse
Affiliation(s)
- Somya Vats
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
| | - Thierry Galli
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Paris, France
| |
Collapse
|
3
|
Lamm CE, Kraner ME, Hofmann J, Börnke F, Mock HP, Sonnewald U. Hop/Sti1 - A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:1754. [PMID: 29075278 PMCID: PMC5641557 DOI: 10.3389/fpls.2017.01754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation.
Collapse
Affiliation(s)
- Christian E. Lamm
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Max. E. Kraner
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Hofmann
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frederik Börnke
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Frescatada-Rosa M, Robatzek S, Kuhn H. Should I stay or should I go? Traffic control for plant pattern recognition receptors. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:23-9. [PMID: 26344487 DOI: 10.1016/j.pbi.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 05/17/2023]
Abstract
Plants employ cell surface-localised receptors to recognise potential invaders via perception of microbe-derived molecules. This is mediated by pattern recognition receptors (PRRs) that bind microbe-associated or damage-associated molecular patterns or perceive apoplastic effector proteins secreted by microorganisms. In either case, effective recognition and initiation of appropriate defence responses rely on a signalling competent pool of receptors at the cell surface. Maintenance of this pool of receptors at the plasma membrane is guaranteed by sorting of properly folded ligand-unbound and ligand-bound receptors via the secretory-endosomal network in an activation-dependent manner. Recent findings highlight that ligand-induced endocytosis is found across members of distinct PRR families suggesting a conserved mechanism by which PRRs and immunity is regulated.
Collapse
Affiliation(s)
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Hannah Kuhn
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
5
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Tintor N, Saijo Y. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:65. [PMID: 24616730 PMCID: PMC3933923 DOI: 10.3389/fpls.2014.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 05/03/2023]
Abstract
Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways.
Collapse
Affiliation(s)
- Nico Tintor
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Yusuke Saijo
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Yusuke Saijo, Laboratory of Plant Immunity, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 630-0192 Ikoma, Japan e-mail:
| |
Collapse
|
7
|
Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. FRONTIERS IN PLANT SCIENCE 2014; 5:735. [PMID: 25566303 PMCID: PMC4273610 DOI: 10.3389/fpls.2014.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.
Collapse
Affiliation(s)
- Karim Bouhidel
- UMR1347 Agroécologie AgroSup/INRA/uB, ERL CNRS 6300, Université de Bourgogne , Dijon, France
| |
Collapse
|
8
|
Hu G, Suo Y, Huang J. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. MOLECULAR PLANT 2013; 6:1933-1944. [PMID: 23793400 DOI: 10.1093/mp/sst109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN). Cargo proteins at each station are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagenesis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.
Collapse
Affiliation(s)
- Guangzhen Hu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | | | | |
Collapse
|