1
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Prokopchuk G, Butenko A, Dacks JB, Speijer D, Field MC, Lukeš J. Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes. Biol Rev Camb Philos Soc 2023; 98:1910-1927. [PMID: 37336550 PMCID: PMC10952624 DOI: 10.1111/brv.12988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
Collapse
Affiliation(s)
- Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
- Life Science Research Centre, Faculty of ScienceUniversity of OstravaChittussiho 983/10Ostrava71000Czech Republic
| | - Joel B. Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Division of Infectious Diseases, Department of MedicineUniversity of Alberta1‐124 Clinical Sciences Building, 11350‐83 AvenueEdmontonT6G 2R3AlbertaCanada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and the EnvironmentUniversity College LondonDarwin Building, Gower StreetLondonWC1E 6BTUK
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMCUniversity of AmsterdamMeibergdreef 15Amsterdam1105 AZThe Netherlands
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- School of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHScotlandUK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of SciencesBranišovská 1160/31České Budějovice37005Czech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1160/31České Budějovice37005Czech Republic
| |
Collapse
|
3
|
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023; 12:cells12040537. [PMID: 36831204 PMCID: PMC9954420 DOI: 10.3390/cells12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism.
Collapse
|
4
|
Wu D, Guo J, Zhang Q, Shi S, Guan W, Zhou C, Chen R, Du B, Zhu L, He G. Necessity of rice resistance to planthoppers for OsEXO70H3 regulating SAMSL excretion and lignin deposition in cell walls. THE NEW PHYTOLOGIST 2022; 234:1031-1046. [PMID: 35119102 PMCID: PMC9306520 DOI: 10.1111/nph.18012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The planthopper resistance gene Bph6 encodes a protein that interacts with OsEXO70E1. EXO70 forms a family of paralogues in rice. We hypothesized that the EXO70-dependent trafficking pathway affects the excretion of resistance-related proteins, thus impacting plant resistance to planthoppers. Here, we further explored the function of EXO70 members in rice resistance against planthoppers. We used the yeast two-hybrid and co-immunoprecipitation assays to identify proteins that play roles in Bph6-mediated planthopper resistance. The functions of the identified proteins were characterized via gene transformation, plant resistance evaluation, insect performance, cell excretion observation and cell wall component analyses. We discovered that another EXO70 member, OsEXO70H3, interacted with BPH6 and functioned in cell excretion and in Bph6-mediated planthopper resistance. We further found that OsEXO70H3 interacted with an S-adenosylmethionine synthetase-like protein (SAMSL) and increased the delivery of SAMSL outside the cells. The functional impairment of OsEXO70H3 and SAMSL reduced the lignin content and the planthopper resistance level of rice plants. Our results suggest that OsEXO70H3 may recruit SAMSL and help its excretion to the apoplast where it may be involved in lignin deposition in cell walls, thus contributing to rice resistance to planthoppers.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Jianping Guo
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Qian Zhang
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shaojie Shi
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Wei Guan
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Cong Zhou
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Bo Du
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Lili Zhu
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Guangcun He
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
5
|
Tunneling nanotubes and related structures: molecular mechanisms of formation and function. Biochem J 2021; 478:3977-3998. [PMID: 34813650 DOI: 10.1042/bcj20210077] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are F-actin-based, membrane-enclosed tubular connections between animal cells that transport a variety of cellular cargo. Over the last 15 years since their discovery, TNTs have come to be recognized as key players in normal cell communication and organism development, and are also exploited for the spread of various microbial pathogens and major diseases like cancer and neurodegenerative disorders. TNTs have also been proposed as modalities for disseminating therapeutic drugs between cells. Despite the rapidly expanding and wide-ranging relevance of these structures in both health and disease, there is a glaring dearth of molecular mechanistic knowledge regarding the formation and function of these important but enigmatic structures. A series of fundamental steps are essential for the formation of functional nanotubes. The spatiotemporally controlled and directed modulation of cortical actin dynamics would be required to ensure outward F-actin polymerization. Local plasma membrane deformation to impart negative curvature and membrane addition at a rate commensurate with F-actin polymerization would enable outward TNT elongation. Extrinsic tactic cues, along with cognate intrinsic signaling, would be required to guide and stabilize the elongating TNT towards its intended target, followed by membrane fusion to create a functional TNT. Selected cargoes must be transported between connected cells through the action of molecular motors, before the TNT is retracted or destroyed. This review summarizes the current understanding of the molecular mechanisms regulating these steps, also highlighting areas that deserve future attention.
Collapse
|
6
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
7
|
Yoshimachi S, Shirakawa R, Cao M, Trinh DA, Gao P, Sakata N, Miyazaki K, Goto K, Miura T, Ariake K, Maeda S, Masuda K, Ishida M, Ohtsuka H, Unno M, Horiuchi H. Ral GTPase-activating protein regulates the malignancy of pancreatic ductal adenocarcinoma. Cancer Sci 2021; 112:3064-3073. [PMID: 34009715 PMCID: PMC8353909 DOI: 10.1111/cas.14970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
The small GTPases RalA and RalB are members of the Ras family and activated downstream of Ras. Ral proteins are found in GTP-bound active and GDP-bound inactive forms. The activation process is executed by guanine nucleotide exchange factors, while inactivation is mediated by GTPase-activating proteins (GAPs). RalGAPs are complexes that consist of a catalytic α1 or α2 subunit together with a common β subunit. Several reports implicate the importance of Ral in pancreatic ductal adenocarcinoma (PDAC). However, there are few reports on the relationship between levels of RalGAP expression and malignancy in PDAC. We generated RalGAPβ-deficient PDAC cells by CRISPR-Cas9 genome editing to investigate how increased Ral activity affects malignant phenotypes of PDAC cells. RalGAPβ-deficient PDAC cells exhibited several-fold higher Ral activity relative to control cells. They had a high migratory and invasive capacity. The RalGAPβ-deficient cells grew more rapidly than control cells when injected subcutaneously into nude mice. When injected into the spleen, the RalGAPβ-deficient cells formed larger splenic tumors with more liver metastases, and unlike controls, they disseminated into the abdominal cavity. These results indicate that RalGAPβ deficiency in PDAC cells contributes to high activities of RalA and RalB, leading to enhanced cell migration and invasion in vitro, and tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Shingo Yoshimachi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Mingxin Cao
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Duc Anh Trinh
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Pan Gao
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency DentistryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Natsumi Sakata
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kento Miyazaki
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kota Goto
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Takayuki Miura
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kyohei Ariake
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Shimpei Maeda
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kunihiro Masuda
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Masaharu Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hideo Ohtsuka
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Michiaki Unno
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hisanori Horiuchi
- Department of Molecular and Cellular BiologyInstitute of Development, Aging and CancerTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
9
|
Larson ER, Ortmannová J, Donald NA, Alvim J, Blatt MR, Žárský V. Synergy among Exocyst and SNARE Interactions Identifies a Functional Hierarchy in Secretion during Vegetative Growth. THE PLANT CELL 2020; 32:2951-2963. [PMID: 32699172 PMCID: PMC7474273 DOI: 10.1105/tpc.20.00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 05/28/2023]
Abstract
Vesicle exocytosis underpins signaling and development in plants and is vital for cell expansion. Vesicle tethering and fusion are thought to occur sequentially, with tethering mediated by the exocyst and fusion driven by assembly of soluble NSF attachment protein receptor (SNARE) proteins from the vesicle membrane (R-SNAREs or vesicle-associated membrane proteins [VAMPs]) and the target membrane (Q-SNAREs). Interactions between exocyst and SNARE protein complexes are known, but their functional consequences remain largely unexplored. We now identify a hierarchy of interactions leading to secretion in Arabidopsis (Arabidopsis thaliana). Mating-based split-ubiquitin screens and in vivo Förster resonance energy transfer analyses showed that exocyst EXO70 subunits bind preferentially to cognate plasma membrane SNAREs, notably SYP121 and VAMP721. The exo70A1 mutant affected SNARE distribution and suppressed vesicle traffic similarly to the dominant-negative truncated protein SYP121ΔC, which blocks secretion at the plasma membrane. These phenotypes are consistent with the epistasis of exo70A1 in the exo70A1 syp121 double mutant, which shows decreased growth similar to exo70A1 single mutants. However, the exo70A1 vamp721 mutant showed a strong, synergy, suppressing growth and cell expansion beyond the phenotypic sum of the two single mutants. These data are best explained by a hierarchy of SNARE recruitment to the exocyst at the plasma membrane, dominated by the R-SNARE and plausibly with the VAMP721 longin domain as a nexus for binding.
Collapse
Affiliation(s)
- Emily R Larson
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jitka Ortmannová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | - Naomi A Donald
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jonas Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Viktor Žárský
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague 2, Czech Republic
| |
Collapse
|
10
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex. Wellcome Open Res 2019; 4:112. [PMID: 31633057 PMCID: PMC6784791 DOI: 10.12688/wellcomeopenres.15142.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Background: The eukaryotic endomembrane system most likely arose
via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist
Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
Affiliation(s)
- Cordula Boehm
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovic, 37005, Czech Republic
| |
Collapse
|
11
|
Boehm C, Field MC. Evolution of late steps in exocytosis: conservation, specialization. Wellcome Open Res 2019; 4:112. [DOI: 10.12688/wellcomeopenres.15142.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Background:The eukaryotic endomembrane system likely aroseviaparalogous expansion of genes encoding proteins specifying organelle identity, coat complexes and government of fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events molded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical subunits, emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis, and possibly additional pathways, and is a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family, which includes conserved oligomeric Golgi (COG), homotypic fusion and vacuole protein sorting (HOPS), class C core vacuole/endosome tethering (CORVET) and others. The exocyst is integrated into a complex GTPase signaling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protistTrypanosoma brucei,and significantly increased genome sequence data, we examined evolution of the exocyst.Methods:We examined evolution of the exocyst by comparative genomics, phylogenetics and structure prediction.Results:The exocyst is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants and Metazoa. Significantly, few taxa retain a partial complex, suggesting that, in the main, all subunits are required for functionality. Further, the ninth exocyst subunit Exo99 is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system.Conclusions:These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Collapse
|
12
|
Zhang W, Cai C, Staiger CJ. Myosins XI Are Involved in Exocytosis of Cellulose Synthase Complexes. PLANT PHYSIOLOGY 2019; 179:1537-1555. [PMID: 30705068 PMCID: PMC6446754 DOI: 10.1104/pp.19.00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 05/18/2023]
Abstract
In plants, cellulose is synthesized at the cell surface by plasma membrane (PM)-localized cellulose synthase (CESA) complexes (CSCs). The molecular and cellular mechanisms that underpin delivery of CSCs to the PM, however, are poorly understood. Cortical microtubules have been shown to interact with CESA-containing compartments and mark the site for CSC delivery, but are not required for the delivery itself. Here, we demonstrate that myosin XI and the actin cytoskeleton mediate CSC delivery to the PM by coordinating the exocytosis of CESA-containing compartments. Measurement of cellulose content indicated that cellulose biosynthesis was significantly reduced in a myosin xik xi1 xi2 triple-knockout mutant. By combining genetic and pharmacological disruption of myosin activity with quantitative live-cell imaging, we observed decreased abundance of PM-localized CSCs and reduced delivery rate of CSCs in myosin-deficient cells. These phenotypes correlated with a significant increase in failed vesicle secretion events at the PM as well as an abnormal accumulation of CESA-containing compartments at the cell cortex. Through high-resolution spatiotemporal assays of cortical vesicle behavior, we identified defects in CSC vesicle tethering and fusion at the PM. Furthermore, disruption of myosin activity reduced the delivery of several other secretory markers to the PM and reduced constitutive and receptor-mediated endocytosis. These findings reveal a previously undescribed role for myosin in vesicle secretion and cellulose production at the cytoskeleton-PM-cell wall nexus.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Chao Cai
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
13
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
14
|
Following the Time-Course of Post-pollination Events by Transmission Electron Microscopy (TEM): Buildup of Exosome-Like Structures with Compatible Pollinations. Methods Mol Biol 2018. [PMID: 27665553 DOI: 10.1007/978-1-4939-3804-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the Brassicaceae, the dry stigma is an initial barrier to pollen acceptance as the stigmatic papillae lack surface secretions, and consequently rapid cellular responses are required to accept compatible pollen. Regulated secretion with secretory vesicles or multivesicular bodies is initiated in the stigmatic papillae towards the compatible pollen grain. In self-incompatible species, this basal compatible pollen response is superseded by the self-incompatibility signaling pathway where the secretory organelles are found in autophagosomes and vacuole for destruction. In this chapter, we describe a detailed protocol using the Transmission Electron Microscope to document the rapid cellular changes that occur in the stigmatic papillae in response to compatible versus self-incompatible pollen, at the pollen-stigma interface.
Collapse
|
15
|
Soto-Burgos J, Zhuang X, Jiang L, Bassham DC. Dynamics of Autophagosome Formation. PLANT PHYSIOLOGY 2018; 176:219-229. [PMID: 29061903 PMCID: PMC5761814 DOI: 10.1104/pp.17.01236] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/18/2017] [Indexed: 05/20/2023]
Abstract
Environmental stress activates autophagy and leads to autophagosome formation at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Junmarie Soto-Burgos
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
16
|
Ravikumar R, Steiner A, Assaad FF. Multisubunit tethering complexes in higher plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:97-105. [PMID: 28889036 DOI: 10.1016/j.pbi.2017.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses.
Collapse
Affiliation(s)
| | | | - Farhah F Assaad
- Botany, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
17
|
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J 2017; 283:3534-3555. [PMID: 26991113 DOI: 10.1111/febs.13712] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The efficient utilization and subsequent reuse of cell components is a key factor in determining the proper growth and functioning of all cells under both optimum and stress conditions. The process of intracellular and intercellular recycling is especially important for the appropriate control of cellular metabolism and nutrient management in immobile organisms, such as plants. Therefore, the accurate recycling of amino acids, lipids, carbohydrates or micro- and macronutrients available in the plant cell becomes a critical factor that ensures plant survival and growth. Plant cells possess two main degradation mechanisms: a ubiquitin-proteasome system and autophagy, which, as a part of an intracellular trafficking system, is based on vesicle transport. This review summarizes knowledge of both the ubiquitin-proteasome system and autophagy pathways, describes the cross-talk between the two and discusses the relationships between autophagy and the vesicular transport systems.
Collapse
Affiliation(s)
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Zhou TT, Zhao YL, Guo HS. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathog 2017; 13:e1006275. [PMID: 28282450 PMCID: PMC5362242 DOI: 10.1371/journal.ppat.1006275] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/22/2017] [Accepted: 03/07/2017] [Indexed: 01/02/2023] Open
Abstract
Successful infection of the host requires secretion of effector proteins to evade or suppress plant immunity. Secretion of effectors in root-infecting fungal pathogens, however, remains unexplored. We previously reported that Verticillium dahliae, a root-infecting phytopathogenic fungus, develops a penetration peg from a hyphopodium to infect cotton roots. In this study, we report that a septin ring, requiring VdSep5, partitions the hyphopodium and the invasive hypha and form the specialized fungus-host interface. The mutant strain, VdΔnoxb, in which NADPH oxidase B (VdNoxB) is deleted, impaired formation of the septin ring at the hyphal neck, indicating that NADPH oxidases regulate septin ring organization. Using GFP tagging and live cell imaging, we observed that several signal peptide containing secreted proteins showed ring signal accumulation/secretion at the penetration interface surrounding the hyphal neck. Targeted mutation for VdSep5 reduced the delivery rate of secretory proteins to the penetration interface. Blocking the secretory pathway by disrupting the vesicular trafficking factors, VdSec22 and VdSyn8, or the exocyst subunit, VdExo70, also arrested delivery of the secreted proteins inside the hyphopodium. Reduced virulence was observed when cotton roots were infected with VdΔsep5, VdΔsec22, VdΔsyn8 and VdΔexo70 mutants compared to infection with the isogenic wild-type V592. Taken together, our data demonstrate that the hyphal neck is an important site for protein secretion during plant root infection, and that the multiple secretory routes are involved in the secretion. Pathogens secrete effector proteins as molecular weapons to evade or suppress plant immunity. However, the mechanism(s) by which root-infecting fungal pathogens secrete secretory effector proteins remains unexplored. We previously reported that Verticillium dahliae, a root-infecting phytopathogenic fungus, forms a specialized infection structure known as a hyphopodium that develops a penetration peg to pierce plant roots. In this study, we observed that after penetration, the penetration peg-developed hyphal neck, partitioning the hyphopodium and invasive hypha, came into close contact with the host, forming the fungus-host penetration interface. NADPH oxidase B (VdNoxB) regulated the cytoskeletal organization of the septin ring at the hyphal neck. Importantly, the penetration interface was a preferential site for secretion of signal peptide-containing proteins. Septin plays an important role in the efficient delivery of secretory proteins to the penetration interface. Moreover, the conventional fungal ER-to-Golgi secretion pathway, endosome-mediated transport and the exocyst complex are involved in the delivery of secretory proteins to the penetration interface. Together, our data demonstrate that the V. dahliae infection structure functions as a key signaling hub during plant infection and is the apparatus that not only breaches host cells but also provides a unique interface for the secretion of fungal effectors.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yun-Long Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:1659-1675. [PMID: 28082718 PMCID: PMC5338673 DOI: 10.1104/pp.16.01709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 05/05/2023]
Abstract
The vesicle-tethering complex exocyst is one of the crucial cell polarity regulators. The EXO70 subunit is required for the targeting of the complex and is represented by many isoforms in angiosperm plant cells. This diversity could be partly responsible for the establishment and maintenance of membrane domains with different composition. To address this hypothesis, we employed the growing pollen tube, a well-established cell polarity model system, and performed large-scale expression, localization, and functional analysis of tobacco (Nicotiana tabacum) EXO70 isoforms. Various isoforms localized to different regions of the pollen tube plasma membrane, apical vesicle-rich inverted cone region, nucleus, and cytoplasm. The overexpression of major pollen-expressed EXO70 isoforms resulted in growth arrest and characteristic phenotypic deviations of tip swelling and apical invaginations. NtEXO70A1a and NtEXO70B1 occupied two distinct and mutually exclusive plasma membrane domains. Both isoforms partly colocalized with the exocyst subunit NtSEC3a at the plasma membrane, possibly forming different exocyst complex subpopulations. NtEXO70A1a localized to the small area previously characterized as the site of exocytosis in the tobacco pollen tube, while NtEXO70B1 surprisingly colocalized with the zone of clathrin-mediated endocytosis. Both NtEXO70A1a and NtEXO70B1 colocalized to different degrees with markers for the anionic signaling phospholipids phosphatidylinositol 4,5-bisphosphate and phosphatidic acid. In contrast, members of the EXO70 C class, which are specifically expressed in tip-growing cells, exhibited exocytosis-related functional effects in pollen tubes despite the absence of apparent plasma membrane localization. Taken together, our data support the existence of multiple membrane-trafficking domains regulated by different EXO70-containing exocyst complexes within a single cell.
Collapse
Affiliation(s)
- Juraj Sekereš
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Jiří Šantrůček
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Nemanja Vukašinović
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Prague 6, Czech Republic (J.S., P.P., N.V., V.Ž., M.P.);
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic (J.S., V.Ž.); and
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic (J.Š.)
| |
Collapse
|
20
|
Vukašinović N, Oda Y, Pejchar P, Synek L, Pečenková T, Rawat A, Sekereš J, Potocký M, Žárský V. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1052-1067. [PMID: 27801942 DOI: 10.1111/nph.14267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/13/2016] [Indexed: 05/23/2023]
Abstract
Cortical microtubules (MTs) play a major role in the patterning of secondary cell wall (SCW) thickenings in tracheary elements (TEs) by determining the sites of SCW deposition. The EXO70A1 subunit of the exocyst secretory vesicle tethering complex was implicated to be important for TE development via the MT interaction. We investigated the subcellular localization of several exocyst subunits in the xylem of Arabidopsis thaliana and analyzed the functional significance of exocyst-mediated trafficking in TE development. Live cell imaging of fluorescently tagged exocyst subunits in TE using confocal microscopy and protein-protein interaction assays were performed to describe the role of the exocyst and its partners in TE development. In TEs, exocyst subunits were localized to the sites of SCW deposition in an MT-dependent manner. We propose that the mechanism of exocyst targeting to MTs involves the direct interaction of exocyst subunits with the COG2 protein. We demonstrated the importance of a functional exocyst subunit EXO84b for normal TE development and showed that the deposition of SCW constituents is partially compromised, possibly as a result of the mislocalization of secondary cellulose synthase in exocyst mutants. We conclude that the exocyst complex is an important factor bridging the pattern defined by cortical MTs with localized secretion of the SCW in developing TEs.
Collapse
Affiliation(s)
- Nemanja Vukašinović
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44, Prague 2, Czech Republic
| | - Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Přemysl Pejchar
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Anamika Rawat
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44, Prague 2, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, v.v.i., The Czech Academy of Sciences, 16502, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, 128 44, Prague 2, Czech Republic
| |
Collapse
|
21
|
Boehm CM, Obado S, Gadelha C, Kaupisch A, Manna PT, Gould GW, Munson M, Chait BT, Rout MP, Field MC. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog 2017; 13:e1006063. [PMID: 28114397 PMCID: PMC5256885 DOI: 10.1371/journal.ppat.1006063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.
Collapse
Affiliation(s)
- Cordula M. Boehm
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Samson Obado
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexandra Kaupisch
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul T. Manna
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Brian T. Chait
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Michael P. Rout
- The Rockefeller University, 1230 York Avenue, New York, NY, United States of America
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
22
|
Bellati J, Champeyroux C, Hem S, Rofidal V, Krouk G, Maurel C, Santoni V. Novel Aquaporin Regulatory Mechanisms Revealed by Interactomics. Mol Cell Proteomics 2016; 15:3473-3487. [PMID: 27609422 PMCID: PMC5098044 DOI: 10.1074/mcp.m116.060087] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
PIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport. For that, a immuno-purification strategy coupled to protein identification and quantification by mass spectrometry (IP-MS) of PIPs was combined with data from the literature, to build thorough PIP1;2 and PIP2;1 interactomes, sharing about 400 interacting proteins. Such interactome revealed PIPs to behave as a platform for recruitment of a wide range of transport activities and provided novel insights into regulation of PIP cellular trafficking by osmotic and oxidative treatments. This work also pointed a role of lipid signaling in PIP function and enhanced our knowledge of protein kinases involved in PIP regulation. In particular we show that 2 members of the receptor-like kinase (RLK) family (RKL1 (At1g48480) and Feronia (At3g51550)) differentially modulate PIP activity through distinct molecular mechanisms. The overall work opens novel perspectives in understanding PIP regulatory mechanisms and their role in adjustment of plant water status.
Collapse
Affiliation(s)
- Jorge Bellati
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Chloé Champeyroux
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Sonia Hem
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Valérie Rofidal
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Gabriel Krouk
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| | - Véronique Santoni
- From the ‡Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, F-34060 Montpellier, Cedex 2, France
| |
Collapse
|
23
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
24
|
Sec6/8 regulates Bcl-2 and Mcl-1, but not Bcl-xl, in malignant peripheral nerve sheath tumor cells. Apoptosis 2016; 21:594-608. [DOI: 10.1007/s10495-016-1230-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Disruption of OsEXO70A1 Causes Irregular Vascular Bundles and Perturbs Mineral Nutrient Assimilation in Rice. Sci Rep 2015; 5:18609. [PMID: 26691393 PMCID: PMC4686888 DOI: 10.1038/srep18609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
Normal uptake, transportation, and assimilation of primary nutrients are essential to plant growth. Tracheary elements (TEs) are tissues responsible for the transport of water and minerals and characterized by patterned secondary cell wall (SCW) thickening. Exocysts are involved in the regulation of SCW deposition by mediating the targeted transport of materials and enzymes to specific membrane areas. EXO70s are highly duplicated in plants and provide exocysts with functional specificity. In this study, we report the isolation of a rice mutant rapid leaf senescence2 (rls2) that exhibits dwarfism, ferruginous spotted necrotic leaves, decreased hydraulic transport, and disordered primary nutrient assimilation. Histological analysis of rls2-1 mutants has indicated impaired cell expansion, collapsed vascular tissues, and irregular SCW deposition. Map-based cloning has revealed that RLS2 encodes OsEXO70A1, which is one of the 47 members of EXO70s in rice. RLS2 was widely expressed and spatially restricted in vascular bundles. Subcellular localization analysis demonstrated that RLS2 was present on both membrane and nuclear regions. Expression analysis revealed that mutations in rls2 triggers transcriptional fluctuation of orthologous EXO70 genes and affects genes involved in primary nutrient absorption and transport. In brief, our study revealed that RLS2 is required for normal vascular bundle differentiation and primary nutrient assimilation.
Collapse
|
26
|
Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring DR. RNA Silencing of Exocyst Genes in the Stigma Impairs the Acceptance of Compatible Pollen in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2526-38. [PMID: 26443677 PMCID: PMC4677879 DOI: 10.1104/pp.15.00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/06/2015] [Indexed: 05/19/2023]
Abstract
Initial pollen-pistil interactions in the Brassicaceae are regulated by rapid communication between pollen grains and stigmatic papillae and are fundamentally important, as they are the first step toward successful fertilization. The goal of this study was to examine the requirement of exocyst subunits, which function in docking secretory vesicles to sites of polarized secretion, in the context of pollen-pistil interactions. One of the exocyst subunit genes, EXO70A1, was previously identified as an essential factor in the stigma for the acceptance of compatible pollen in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We hypothesized that EXO70A1, along with other exocyst subunits, functions in the Brassicaceae dry stigma to deliver cargo-bearing secretory vesicles to the stigmatic papillar plasma membrane, under the pollen attachment site, for pollen hydration and pollen tube entry. Here, we investigated the functions of exocyst complex genes encoding the remaining seven subunits, SECRETORY3 (SEC3), SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmas following compatible pollinations. Stigma-specific RNA-silencing constructs were used to suppress the expression of each exocyst subunit individually. The early postpollination stages of pollen grain adhesion, pollen hydration, pollen tube penetration, seed set, and overall fertility were analyzed in the transgenic lines to evaluate the requirement of each exocyst subunit. Our findings provide comprehensive evidence that all eight exocyst subunits are necessary in the stigma for the acceptance of compatible pollen. Thus, this work implicates a fully functional exocyst complex as a component of the compatible pollen response pathway to promote pollen acceptance.
Collapse
Affiliation(s)
- Darya Safavian
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Yara Zayed
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Emily Indriolo
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Laura Chapman
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Abdalla Ahmed
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Daphne R Goring
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
27
|
Stanislas T, Hüser A, Barbosa ICR, Kiefer CS, Brackmann K, Pietra S, Gustavsson A, Zourelidou M, Schwechheimer C, Grebe M. Arabidopsis D6PK is a lipid domain-dependent mediator of root epidermal planar polarity. NATURE PLANTS 2015; 1:15162. [PMID: 27251533 DOI: 10.1038/nplants.2015.162] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Development of diverse multicellular organisms relies on coordination of single-cell polarities within the plane of the tissue layer (planar polarity). Cell polarity often involves plasma membrane heterogeneity generated by accumulation of specific lipids and proteins into membrane subdomains. Coordinated hair positioning along Arabidopsis root epidermal cells provides a planar polarity model in plants, but knowledge about the functions of proteo-lipid domains in planar polarity signalling remains limited. Here we show that Rho-of-plant (ROP) 2 and 6, phosphatidylinositol-4-phosphate 5-kinase 3 (PIP5K3), DYNAMIN-RELATED PROTEIN (DRP) 1A and DRP2B accumulate in a sterol-enriched, polar membrane domain during root hair initiation. DRP1A, DRP2B, PIP5K3 and sterols are required for planar polarity and the AGCVIII kinase D6 PROTEIN KINASE (D6PK) is a modulator of this process. D6PK undergoes phosphatidylinositol-4,5-bisphosphate- and sterol-dependent basal-to-planar polarity switching into the polar, lipid-enriched domain just before hair formation, unravelling lipid-dependent D6PK localization during late planar polarity signalling.
Collapse
Affiliation(s)
- Thomas Stanislas
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, DE-14476 Potsdam-Golm, Germany
| | - Anke Hüser
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Inês C R Barbosa
- Technische Universität München, Plant Systems Biology, Emil-Ramann-Str. 4,DE-85354 Freising, Germany
| | - Christian S Kiefer
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Klaus Brackmann
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Stefano Pietra
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Anna Gustavsson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Melina Zourelidou
- Technische Universität München, Plant Systems Biology, Emil-Ramann-Str. 4,DE-85354 Freising, Germany
| | - Claus Schwechheimer
- Technische Universität München, Plant Systems Biology, Emil-Ramann-Str. 4,DE-85354 Freising, Germany
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, DE-14476 Potsdam-Golm, Germany
| |
Collapse
|
28
|
Kuhlee A, Raunser S, Ungermann C. Functional homologies in vesicle tethering. FEBS Lett 2015; 589:2487-97. [PMID: 26072291 DOI: 10.1016/j.febslet.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 11/24/2022]
Abstract
The HOPS multisubunit tethering factor (MTC) is a macromolecular protein complex composed of six different subunits. It is one of the key components in the perception and subsequent fusion of multivesicular bodies and vacuoles. Electron microscopy studies indicate structural flexibility of the purified HOPS complex. Inducing higher rigidity into HOPS by biochemically modifying the complex declines the potential to mediate SNARE-driven membrane fusion. Thus, we propose that integral flexibility seems to be not only a feature, but of essential need for the function of HOPS. This review focuses on the general features of membrane tethering and fusion. For this purpose, we compare the structure and mode of action of different tethering factors to highlight their common central features and mechanisms.
Collapse
Affiliation(s)
- Anne Kuhlee
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Ungermann
- Department of Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
| |
Collapse
|
29
|
Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal 2015; 27:1110-9. [DOI: 10.1016/j.cellsig.2015.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/02/2015] [Accepted: 02/16/2015] [Indexed: 12/15/2022]
|
30
|
Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV, Perelmuter VM. Cancer Invasion: Patterns and Mechanisms. Acta Naturae 2015; 7:17-28. [PMID: 26085941 PMCID: PMC4463409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer invasion and the ability of malignant tumor cells for directed migration and metastasis have remained a focus of research for many years. Numerous studies have confirmed the existence of two main patterns of cancer cell invasion: collective cell migration and individual cell migration, by which tumor cells overcome barriers of the extracellular matrix and spread into surrounding tissues. Each pattern of cell migration displays specific morphological features and the biochemical/molecular genetic mechanisms underlying cell migration. Two types of migrating tumor cells, mesenchymal (fibroblast-like) and amoeboid, are observed in each pattern of cancer cell invasion. This review describes the key differences between the variants of cancer cell migration, the role of epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and amoeboid- mesenchymal transitions, as well as the significance of different tumor factors and stromal molecules in tumor invasion. The data and facts collected are essential to the understanding of how the patterns of cancer cell invasion are related to cancer progression and therapy efficacy. Convincing evidence is provided that morphological manifestations of the invasion patterns are characterized by a variety of tissue (tumor) structures. The results of our own studies are presented to show the association of breast cancer progression with intratumoral morphological heterogeneity, which most likely reflects the types of cancer cell migration and results from different activities of cell adhesion molecules in tumor cells of distinct morphological structures.
Collapse
Affiliation(s)
- N. V. Krakhmal
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050, Tomsk, Russia
| | - M. V. Zavyalova
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050, Tomsk, Russia
- Tomsk Cancer Research Institute, Kooperativny Pereulok, 5, 634050, Tomsk, Russia
- Tomsk State University, Prosp. Lenina, 36, 634050, Tomsk, Russia
| | - E. V. Denisov
- Tomsk Cancer Research Institute, Kooperativny Pereulok, 5, 634050, Tomsk, Russia
- Tomsk State University, Prosp. Lenina, 36, 634050, Tomsk, Russia
| | - S. V. Vtorushin
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050, Tomsk, Russia
- Tomsk Cancer Research Institute, Kooperativny Pereulok, 5, 634050, Tomsk, Russia
| | - V. M. Perelmuter
- Siberian State Medical University, Moskovskiy Trakt, 2, 634050, Tomsk, Russia
- Tomsk Cancer Research Institute, Kooperativny Pereulok, 5, 634050, Tomsk, Russia
| |
Collapse
|
31
|
Ebine K, Ueda T. Roles of membrane trafficking in plant cell wall dynamics. FRONTIERS IN PLANT SCIENCE 2015; 6:878. [PMID: 26539200 PMCID: PMC4609830 DOI: 10.3389/fpls.2015.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/02/2015] [Indexed: 05/18/2023]
Abstract
The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuo Ebine,
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| |
Collapse
|
32
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
33
|
Michaeli S, Avin-Wittenberg T, Galili G. Involvement of autophagy in the direct ER to vacuole protein trafficking route in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:134. [PMID: 24782875 PMCID: PMC3986525 DOI: 10.3389/fpls.2014.00134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/21/2014] [Indexed: 05/07/2023]
Abstract
Trafficking of proteins from the endoplasmic reticulum (ER) to the vacuole is a fundamental process in plants, being involved both in vacuole biogenesis as well as with plant growth and response to environmental stresses. Although the canonical transport of cellular components from the ER to the vacuole includes the Golgi apparatus as an intermediate compartment, there are multiple lines of evidence that support the existence of a direct ER-to-vacuole, Golgi-independent, trafficking route in plants that uses the autophagy machinery. Plant autophagy was initially described by electron microscopy, visualizing cellular structures that are morphologically reminiscent of autophagosomes. In some of these reports these structures were shown to transport vacuole residing proteins, particularly seed storage proteins, directly from the ER to the vacuole. More recently, following the discovery of the proteins of the core autophagy machinery, molecular tools were implemented in deciphering the involvement of autophagy in this special trafficking route. Here we review the relatively older and more recent scientific observations, supporting the involvement of autophagy in the special cellular trafficking pathways of plants.
Collapse
Affiliation(s)
- Simon Michaeli
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
| | | | - Gad Galili
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
- *Correspondence: Gad Galili, Department of Plant Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel e-mail:
| |
Collapse
|
34
|
Thomas C, Staiger CJ. A dynamic interplay between membranes and the cytoskeleton critical for cell development and signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:335. [PMID: 25076954 PMCID: PMC4099933 DOI: 10.3389/fpls.2014.00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 05/04/2023]
Affiliation(s)
- Clément Thomas
- Laboratory of Cellular and Molecular Oncology, Department of Oncology, Public Research Centre for HealthLuxembourg, Luxembourg
- *Correspondence: ;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
- *Correspondence: ;
| |
Collapse
|
35
|
Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. FRONTIERS IN PLANT SCIENCE 2014; 5:735. [PMID: 25566303 PMCID: PMC4273610 DOI: 10.3389/fpls.2014.00735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.
Collapse
Affiliation(s)
- Karim Bouhidel
- UMR1347 Agroécologie AgroSup/INRA/uB, ERL CNRS 6300, Université de Bourgogne , Dijon, France
| |
Collapse
|