1
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
2
|
Pankratenko AV, Atabekova AK, Morozov SY, Solovyev AG. Membrane Contacts in Plasmodesmata: Structural Components and Their Functions. BIOCHEMISTRY (MOSCOW) 2020; 85:531-544. [DOI: 10.1134/s0006297920050028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Liu NJ, Zhang T, Liu ZH, Chen X, Guo HS, Ju BH, Zhang YY, Li GZ, Zhou QH, Qin YM, Zhu YX. Phytosphinganine Affects Plasmodesmata Permeability via Facilitating PDLP5-Stimulated Callose Accumulation in Arabidopsis. MOLECULAR PLANT 2020; 13:128-143. [PMID: 31698047 DOI: 10.1016/j.molp.2019.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/14/2023]
Abstract
Plant plasmodesmata (PDs) are specialized channels that enable communication between neighboring cells. The intercellular permeability of PDs, which affects plant development, defense, and responses to stimuli, must be tightly regulated. However, the lipid compositions of PD membrane and their impact on PD permeability remain elusive. Here, we report that the Arabidopsis sld1 sld2 double mutant, lacking sphingolipid long-chain base 8 desaturases 1 and 2, displayed decreased PD permeability due to a significant increase in callose accumulation. PD-located protein 5 (PDLP5) was significantly enriched in the leaf epidermal cells of sld1 sld2 and showed specific binding affinity to phytosphinganine (t18:0), suggesting that the enrichment of t18:0-based sphingolipids in sld1 sld2 PDs might facilitate the recruitment of PDLP5 proteins to PDs. The sld1 sld2 double mutant seedlings showed enhanced resistance to the fungal-wilt pathogen Verticillium dahlia and the bacterium Pseudomonas syringae pv. tomato DC3000, which could be fully rescued in sld1 sld2 pdlp5 triple mutant. Taken together, these results indicate that phytosphinganine might regulate PD functions and cell-to-cell communication by modifying the level of PDLP5 in PD membranes.
Collapse
Affiliation(s)
- Ning-Jing Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zhao-Hui Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Bai-Hang Ju
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China
| | - Guo-Zhu Li
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qiang-Hui Zhou
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yong-Mei Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China.
| | - Yu-Xian Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Room 228, Jinguang Building, No. 5 in Yi-He Yuan Road, Beijing 100871, People's Republic of China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
4
|
Ganusova EE, Burch-Smith TM. Review: Plant-pathogen interactions through the plasmodesma prism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:70-80. [PMID: 30709495 DOI: 10.1016/j.plantsci.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
5
|
Parra-Lobato MC, Paredes MA, Labrador J, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Localization of Sphingolipid Enriched Plasma Membrane Regions and Long-Chain Base Composition during Mature-Fruit Abscission in Olive. FRONTIERS IN PLANT SCIENCE 2017; 8:1138. [PMID: 28706527 PMCID: PMC5489598 DOI: 10.3389/fpls.2017.01138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
Sphingolipids, found in membranes of eukaryotic cells, have been demonstrated to carry out functions in various processes in plant cells. However, the roles of these lipids in fruit abscission remain to be determined in plants. Biochemical and fluorescence microscopy imaging approach has been adopted to investigate the accumulation and distribution of sphingolipids during mature-fruit abscission in olive (Olea europaea L. cv. Picual). Here, a lipid-content analysis in live protoplasts of the olive abscission zone (AZ) was made with fluorescent dyes and lipid analogs, particularly plasma membrane sphingolipid-enriched domains, and their dynamics were investigated in relation to the timing of mature-fruit abscission. In olive AZ cells, the measured proportion of both polar lipids and sphingolipids increased as well as endocytosis was stimulated during mature-fruit abscission. Likewise, mature-fruit abscission resulted in quantitative and qualitative changes in sphingolipid long-chain bases (LCBs) in the olive AZ. The total LCB increase was due essentially to the increase of t18:1(8E) LCBs, suggesting that C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation were quantitatively the most important sphingolipids in olive AZ during abscission. However, our results also showed a specific association between the dihydroxylated LCB sphinganine (d18:0) and the mature-fruit abscission. These results indicate a clear correlation between the sphingolipid composition and mature-fruit abscission. Moreover, measurements of endogenous sterol levels in the olive AZ revealed that it accumulated sitosterol and campesterol with a concomitant decrease in cycloartenol during abscission. In addition, underlying the distinct sterol composition of AZ during abscission, genes for key biosynthetic enzymes for sterol synthesis, for obtusifoliol 14α-demethylase (CYP51) and C-24 sterol methyltransferase2 (SMT2), were up-regulated during mature-fruit abscission, in parallel to the increase in sitosterol content. The differences found in AZ lipid content and the relationships established between LCB and sterol composition, offer new insights about sphingolipids and sterols in abscission.
Collapse
Affiliation(s)
| | - Miguel A. Paredes
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
| | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of HidalgoTulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of ExtremaduraBadajoz, Spain
- *Correspondence: Maria C. Gomez-Jimenez,
| |
Collapse
|
6
|
Zavaliev R, Dong X, Epel BL. Glycosylphosphatidylinositol (GPI) Modification Serves as a Primary Plasmodesmal Sorting Signal. PLANT PHYSIOLOGY 2016; 172:1061-1073. [PMID: 27559035 PMCID: PMC5047108 DOI: 10.1104/pp.16.01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
Plasmodesmata (Pd) are membranous channels that serve as a major conduit for cell-to-cell communication in plants. The Pd-associated β-1,3-glucanase (BG_pap) and CALLOSE BINDING PROTEIN1 (PDCB1) were identified as key regulators of Pd conductivity. Both are predicted glycosylphosphatidylinositol-anchored proteins (GPI-APs) carrying a conserved GPI modification signal. However, the subcellular targeting mechanism of these proteins is unknown, particularly in the context of other GPI-APs not associated with Pd Here, we conducted a comparative analysis of the subcellular targeting of the two Pd-resident and two unrelated non-Pd GPI-APs in Arabidopsis (Arabidopsis thaliana). We show that GPI modification is necessary and sufficient for delivering both BG_pap and PDCB1 to Pd Moreover, the GPI modification signal from both Pd- and non-Pd GPI-APs is able to target a reporter protein to Pd, likely to plasma membrane microdomains enriched at Pd As such, the GPI modification serves as a primary Pd sorting signal in plant cells. Interestingly, the ectodomain, a region that carries the functional domain in GPI-APs, in Pd-resident proteins further enhances Pd accumulation. However, in non-Pd GPI-APs, the ectodomain overrides the Pd targeting function of the GPI signal and determines a specific GPI-dependent non-Pd localization of these proteins at the plasma membrane and cell wall. Domain-swap analysis showed that the non-Pd localization is also dominant over the Pd-enhancing function mediated by a Pd ectodomain. In conclusion, our results indicate that segregation between Pd- and non-Pd GPI-APs occurs prior to Pd targeting, providing, to our knowledge, the first evidence of the mechanism of GPI-AP sorting in plants.
Collapse
Affiliation(s)
- Raul Zavaliev
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| | - Xinnian Dong
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| | - Bernard L Epel
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (R.Z., B.L.E.); andDepartment of Biology, Duke University, Durham, North Carolina 27708 (R.Z., X.D.)
| |
Collapse
|
7
|
Bayer EM, Mongrand S, Tilsner J. Specialized membrane domains of plasmodesmata, plant intercellular nanopores. FRONTIERS IN PLANT SCIENCE 2014; 5:507. [PMID: 25324854 PMCID: PMC4179711 DOI: 10.3389/fpls.2014.00507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/09/2014] [Indexed: 05/05/2023]
Affiliation(s)
- Emmanuelle M. Bayer
- Laboratory of Membrane Biogenesis, University of BordeauxBordeaux, France
- *Correspondence: ;
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, University of BordeauxBordeaux, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St AndrewsFife, UK
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- *Correspondence: ;
| |
Collapse
|