1
|
Chen M, Nie G, Li X, Yang L, Cai Y, Zhang Y. Development of EST-SSR markers based on transcriptome sequencing for germplasm evaluation of 65 lilies (Lilium). Mol Biol Rep 2023; 50:3259-3269. [PMID: 36709470 DOI: 10.1007/s11033-022-08083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Lilium genus consists of approximately 100 species and numerous varieties, many of which are interspecific hybrids, which result in a complicated genetic background. The germplasm identification, genetic relationship analysis, and breeding of Lilium rely on exploiting genetic information among different accessions. Hence, an attempt was made to develop new EST-SSR markers and study the molecular divergence among 65 genotypes of Lilium. METHODS AND RESULTS A total of 5509 EST-SSRs were identified from the high-throughput sequencing database of L. 'Elodie'. After primer screening, six primer pairs with the most abundant polymorphic bands were selected from 100 primer pairs. Combined with the other 10 reported SSR primers, a total of 16 pairs detected genetic information with an average PIC value of 0.7583. The number of alleles per locus varied from four to 33, the expected heterozygosity varied from 0.3289 to 0.9231, and the observed heterozygosity varied from 0.2857 to 0.5122. Based on the phylogenic results, 22 Asiatic hybrids (A), seven Longiflorum × Asiatic hybrids (LA), as well as two native species were grouped. Eighteen Oriental hybrids (O) and nine Oriental × Trumpet (OT) hybrids, four native species, one LO, and one LL (L. pardalinum × L. longiflorum) variety were grouped. CONCLUSIONS Two major clusters were reported and a large number of genotypes were grouped based on UPGMA and STRUCTURE analysis methods. The PIC value as well as other parameters revealed that the EST-SSR markers selected were informative. In addition, the clustering pattern displayed better agreement with the cultivar's pedigree. The newly identified SSRs in this study provides molecular markers for germplasm characterization and genetic diversity for Lilium.
Collapse
Affiliation(s)
- Minmin Chen
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Gongping Nie
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xin Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liuyan Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Youming Cai
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yongchun Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
2
|
Malvestiti MC, Immink RGH, Arens P, Quiroz Monnens T, van Kan JAL. Fire Blight Susceptibility in Lilium spp. Correlates to Sensitivity to Botrytis elliptica Secreted Cell Death Inducing Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:660337. [PMID: 34262577 PMCID: PMC8273286 DOI: 10.3389/fpls.2021.660337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Fire blight represents a widespread disease in Lilium spp. and is caused by the necrotrophic Ascomycete Botrytis elliptica. There are >100 Lilium species that fall into distinct phylogenetic groups and these have been used to generate the contemporary commercial genotypes. It is known among lily breeders and growers that different groups of lilies differ in susceptibility to fire blight, but the genetic basis and mechanisms of susceptibility to fire blight are unresolved. The aim of this study was to quantify differences in fire blight susceptibility between plant genotypes and differences in virulence between fungal isolates. To this end we inoculated, in four biological replicates over 2 years, a set of 12 B. elliptica isolates on a panel of 18 lily genotypes representing seven Lilium hybrid groups. A wide spectrum of variation in symptom severity was observed in different isolate-genotype combinations. There was a good correlation between the lesion diameters on leaves and flowers of the Lilium genotypes, although the flowers generally showed faster expanding lesions. It was earlier postulated that B. elliptica pathogenicity on lily is conferred by secreted proteins that induce programmed cell death in lily cells. We selected two aggressive isolates and one mild isolate and collected culture filtrate (CF) samples to compare the cell death inducing activity of their secreted compounds in lily. After leaf infiltration of the CFs, variation was observed in cell death responses between the diverse lilies. The severity of cell death responses upon infiltration of the fungal CF observed among the diverse Lilium hybrid groups correlated well to their fire blight susceptibility. These results support the hypothesis that susceptibility to fire blight in lily is mediated by their sensitivity to B. elliptica effector proteins in a quantitative manner. Cell death-inducing proteins may provide an attractive tool to predict fire blight susceptibility in lily breeding programs.
Collapse
Affiliation(s)
- Michele C. Malvestiti
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Richard G. H. Immink
- Department of Bioscience, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Paul Arens
- Department of Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Thomas Quiroz Monnens
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
3
|
Transcriptome wide SSR discovery cross-taxa transferability and development of marker database for studying genetic diversity population structure of Lilium species. Sci Rep 2020; 10:18621. [PMID: 33122761 PMCID: PMC7596044 DOI: 10.1038/s41598-020-75553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 01/06/2023] Open
Abstract
Lily belongs to family liliaceae, which mainly propagates vegetatively. Therefore, sufficient number of polymorphic, informative, and functional molecular markers are essential for studying a wide range of genetic parameters in Lilium species. We attempted to develop, characterize and design SSR (simple sequence repeat) markers using online genetic resources for analyzing genetic diversity and population structure of Lilium species. We found di-nucleotide repeat motif were more frequent (4684) within 0.14 gb (giga bases) transcriptome than other repeats, of which was two times higher than tetra-repeat motifs. Frequency of di-(AG/CT), tri-(AGG/CTT), tetra-(AAAT), penta-(AGAGG), and hexa-(AGAGGG) repeats was 34.9%, 7.0%, 0.4%, 0.3%, and 0.2%, respectively. A total of 3607 non-redundant SSR primer pairs was designed based on the sequences of CDS, 5'-UTR and 3'-UTR region covering 34%, 14%, 23%, respectively. Among them, a sub set of primers (245 SSR) was validated using polymerase chain reaction (PCR) amplification, of which 167 primers gave expected PCR amplicon and 101 primers showed polymorphism. Each locus contained 2 to 12 alleles on average 0.82 PIC (polymorphic information content) value. A total of 87 lily accessions was subjected to genetic diversity analysis using polymorphic SSRs and found to separate into seven groups with 0.73 to 0.79 heterozygosity. Our data on large scale SSR based genetic diversity and population structure analysis may help to accelerate the breeding programs of lily through utilizing different genomes, understanding genetics and characterizing germplasm with efficient manner.
Collapse
|
4
|
He X, Li W, Zhang W, Jin X, Shenkute AG, Aynalem T, Xu S, Wang W. Transcriptome Sequencing Analysis Provides Insights Into the Response to Fusarium oxysporum in Lilium pumilum. Evol Bioinform Online 2019; 15:1176934319838818. [PMID: 31223231 PMCID: PMC6563521 DOI: 10.1177/1176934319838818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Lily basal rot, caused by Fusarium oxysporum f. sp. lilii, is one of the most serious diseases of lily. Although the lily germplasm which is resistant to F. oxysporum has been used in disease-resistant breeding, few studies on its molecular mechanism of disease resistance have been reported. To comprehensively study the mechanism of resistance to F. oxysporum, transcriptome sequencings of root tissues from Lilium pumilum inoculated with F. oxysporum or sterile water for 6, 12, or 24 h were performed. A total of 50 GB of data were obtained from the transcriptome sequencings of the 6 L. pumilum samples, and 217 098 Unigenes were obtained after the de novo assembly, of which 38.36% Unigenes were annotated. The sequencing results showed that the numbers of differentially expressed genes at 6, 12, and 24 h after inoculation compared with the control were 111, 254, and 2500, respectively. The functional enrichment analysis of the differentially expressed genes showed that several pathways were involved in responses of L. pumilum, mainly including starch and sucrose metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, vitamin B6 (VB6) biosynthesis, acid biosynthesis, proteasome, and ribosome. Transcription factor analysis revealed that the WRKY and ERF families played important roles in responses of L. pumilum to F. oxysporum. The results of this study elucidate the molecular responses to F. oxysporum in lily and lay a theoretical foundation for improving lily breeding and strategies for lily basal rot resistance.
Collapse
Affiliation(s)
- Xiangfeng He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Wanyue Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Wenzhu Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiaotong Jin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Awraris Getachew Shenkute
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tessema Aynalem
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shufa Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
5
|
Exploration and Exploitation of Novel SSR Markers for Candidate Transcription Factor Genes in Lilium Species. Genes (Basel) 2018; 9:genes9020097. [PMID: 29443955 PMCID: PMC5852593 DOI: 10.3390/genes9020097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022] Open
Abstract
Lilies (Lilium sp.) are commercially important horticultural crops widely cultivated for their flowers and bulbs. Here, we conducted large-scale data mining of the lily transcriptome to develop transcription factor (TF)-associated microsatellite markers (TFSSRs). Among 216,768 unigenes extracted from our sequence data, 6966 unigenes harbored simple sequence repeats (SSRs). Seventy-one SSRs were associated with TF genes, and these were used to design primers and validate their potential as markers. These 71 SSRs were accomplished with 31 transcription factor families; including bHLH, MYB, C2H2, ERF, C3H, NAC, bZIP, and so on. Fourteen highly polymorphic SSRs were selected based on Polymorphic Information Content (PIC) values and used to study genetic diversity and population structure in lily accessions. Higher genetic diversity was observed in Longiflorum compared to Oriental and Asiatic populations. Lily accessions were divided into three sub-populations based in our structure analysis, and an un-rooted neighbor-joining tree effectively separated the accessions according to Asiatic, Oriental, and Longiflorum subgroups. Finally, we showed that 46 of the SSR-associated genes were differentially expressed in response to Botrytis elliptica infection. Thus, our newly developed TFSSR markers represent a powerful tool for large-scale genotyping, high-density and comparative mapping, marker-aided backcrossing, and molecular diversity analysis of Lilium sp.
Collapse
|
6
|
Xu L, Yang P, Feng Y, Xu H, Cao Y, Tang Y, Yuan S, Liu X, Ming J. Spatiotemporal Transcriptome Analysis Provides Insights into Bicolor Tepal Development in Lilium "Tiny Padhye". FRONTIERS IN PLANT SCIENCE 2017; 8:398. [PMID: 28392796 PMCID: PMC5364178 DOI: 10.3389/fpls.2017.00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/08/2017] [Indexed: 05/24/2023]
Abstract
The bicolor Asiatic hybrid lily cultivar "Tiny Padhye" is an attractive variety because of its unique color pattern. During its bicolor tepal development, the upper tepals undergo a rapid color change from green to white, while the tepal bases change from green to purple. However, the molecular mechanisms underlying these changes remain largely uncharacterized. To systematically investigate the dynamics of the lily bicolor tepal transcriptome during development, we generated 15 RNA-seq libraries from the upper tepals (S2-U) and basal tepals (S1-D, S2-D, S3-D, and S4-D) of Lilium "Tiny Padhye." Utilizing the Illumina platform, a total of 295,787 unigenes were obtained from 713.12 million high-quality paired-end reads. A total of 16,182 unigenes were identified as differentially expressed genes during tepal development. Using Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (61 unigenes), and chlorophyll metabolic pathway (106 unigenes) were identified. Further analyses showed that most anthocyanin biosynthesis genes were transcribed coordinately in the tepal bases, but not in the upper tepals, suggesting that the bicolor trait of "Tiny Padhye" tepals is caused by the transcriptional regulation of anthocyanin biosynthetic genes. Meanwhile, the high expression level of chlorophyll degradation genes and low expression level of chlorophyll biosynthetic genes resulted in the absence of chlorophylls from "Tiny Padhye" tepals after flowering. Transcription factors putatively involved in the anthocyanin biosynthetic pathway and chlorophyll metabolism in lilies were identified using a weighted gene co-expression network analysis and their possible roles in lily bicolor tepal development were discussed. In conclusion, these extensive transcriptome data provide a platform for elucidating the molecular mechanisms of bicolor tepals in lilies and provide a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Leifeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Panpan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Ornamental Plants, College of Landscape Architecture, Nanjing Forestry UniversityNanjing, China
| | - Yayan Feng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hua Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuwei Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yuchao Tang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Suxia Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jun Ming
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
7
|
Bakhshaie M, Khosravi S, Azadi P, Bagheri H, van Tuyl JM. Biotechnological advances in Lilium. PLANT CELL REPORTS 2016; 35:1799-826. [PMID: 27318470 DOI: 10.1007/s00299-016-2017-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/10/2016] [Indexed: 05/03/2023]
Abstract
Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily.
Collapse
Affiliation(s)
- Mehdi Bakhshaie
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tehran, P.O. Box 31587-11167, Karaj, Iran.
| | - Solmaz Khosravi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31535-1897, Karaj, Iran
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31535-1897, Karaj, Iran.
| | - Hedayat Bagheri
- Department of Plant Biotechnology, Bu Ali Sina University, 65174, Hamedan, Iran
| | - Jaap M van Tuyl
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
8
|
Du F, Jiang J, Jia H, Zhao XY, Wang WH, Gao QK, Mao WH, Wu Y, Zhang L, Grierson D, Xia YP, Gao ZS. Selection of generally applicable SSR markers for evaluation of genetic diversity and identity in Lilium. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|