1
|
Broughton S, Castello M, Liu L, Killen J, McMullan C. Anther Culture Protocols for Barley and Wheat. Methods Mol Biol 2024; 2827:243-266. [PMID: 38985275 DOI: 10.1007/978-1-0716-3954-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.
Collapse
Affiliation(s)
- Sue Broughton
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Marieclaire Castello
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Li Liu
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Julie Killen
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Christopher McMullan
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
2
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
3
|
Applications of Impedance Flow Cytometry in Doubled Haploid Technology. Methods Mol Biol 2021. [PMID: 34270062 DOI: 10.1007/978-1-0716-1331-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Efficient doubled haploid (DH) plant production is of great interest in the plant breeding industry and research because homozygous lines are obtained within a single generation shortening the breeding cycle substantially. DH protocol development can be a time- and resource-consuming process due to numerous factors affecting its success and efficiency. Here we present concepts and examples about how critical success factors can be identified throughout a DH protocol and an early microspore response monitored by simple impedance flow cytometry (IFC) measurements, which will help to optimize each step of an androgenesis-based DH protocol.
Collapse
|
4
|
Corral-Martínez P, Siemons C, Horstman A, Angenent GC, de Ruijter N, Boutilier K. Live Imaging of embryogenic structures in Brassica napus microspore embryo cultures highlights the developmental plasticity of induced totipotent cells. PLANT REPRODUCTION 2020; 33:143-158. [PMID: 32651727 PMCID: PMC7648746 DOI: 10.1007/s00497-020-00391-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 05/10/2023]
Abstract
In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.
Collapse
Affiliation(s)
- Patricia Corral-Martínez
- Plant Development Systems, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
- Cell Biology Group, COMAV Institute, Universitat Politècnica de València (UPV), Camino de Vera, s/n. 46022, València, Spain
| | - Charlotte Siemons
- Plant Development Systems, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
| | - Anneke Horstman
- Plant Development Systems, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
| | - Gerco C Angenent
- Plant Development Systems, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
- Wageningen Light Microscopy Centre, Wageningen University and Research, P.O. Box 633, 6700 AP, Wageningen, The Netherlands
| | - Kim Boutilier
- Plant Development Systems, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Castillo AM, Valero-Rubira I, Burrell MÁ, Allué S, Costar MA, Vallés MP. Trichostatin A Affects Developmental Reprogramming of Bread Wheat Microspores towards an Embryogenic Route. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1442. [PMID: 33114625 PMCID: PMC7693754 DOI: 10.3390/plants9111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Microspores can be developmentally reprogrammed by the application of different stress treatments to initiate an embryogenic pathway leading to the production of doubled haploid (DH) plants. Epigenetic modifications are involved in cell reprogramming and totipotency in response to stress. To increase microspore embryogenesis (ME) efficiency in bread wheat, the effect of the histone deacetylase inhibitor trichostatin A (TSA) has been examined in two cultivars of wheat with different microspore embryogenesis response. Diverse strategies were assayed using 0-0.4 µM TSA as a single induction treatment and after or simultaneously with cold or mannitol stresses. The highest efficiency was achieved when 0.4 µM TSA was applied to anthers for 5 days simultaneously with a 0.7 M mannitol treatment, producing a four times greater number of green DH plants than mannitol. Ultrastructural studies by transmission electron microscopy indicated that mannitol with TSA and mannitol treatments induced similar morphological changes in early stages of microspore reprogramming, although TSA increased the number of microspores with 'star-like' morphology and symmetric divisions. The effect of TSA on the transcript level of four ME marker genes indicated that the early signaling pathways in ME, involving the TaTDP1 and TAA1b genes, may be mediated by changes in acetylation patterns of histones and/or other proteins.
Collapse
Affiliation(s)
- Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, C/Irrunlarrea s/n, 31008 Pamplona, Spain;
| | - Sandra Allué
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Asunción Costar
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| | - María Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain; (A.M.C.); (I.V.-R.); (S.A.); (M.A.C.)
| |
Collapse
|
6
|
Ahmadi B, Ebrahimzadeh H. In vitro androgenesis: spontaneous vs. artificial genome doubling and characterization of regenerants. PLANT CELL REPORTS 2020; 39:299-316. [PMID: 31974735 DOI: 10.1007/s00299-020-02509-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/13/2020] [Indexed: 05/11/2023]
Abstract
Androgenesis has become the most frequently chosen method of doubled haploid (DH) production in major crops. Theoretically, plantlets derived from in vitro cultured microspore encompass half of the normal chromosome number of donor plants and thus, considered to be haploid. However, depending on species/genotype and the method of haploid production, either via anther or isolated microspore culture, different ratios of spontaneous DHs and diploid (2n) or even polyploid plants originating from somatic tissues or unreduced gametes may also arise in the cultures. Adopting the method of haploid identification, anti-microtubular agent for restoring fertility, and discriminating spontaneous DHs from undesired heterozygote plants will substantially affect the success of androgenesis in breeding programs. The recent advances in the last 2 decades have made it possible to characterize the in vitro regenerants efficiently either prior to genome duplication or using in breeding programs. The herein described approaches and antimicotubular agents are, therefore, expected to improve the efficiency of DH-based breeding pipeline through the in vitro androgenesis.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran.
| | - Hamed Ebrahimzadeh
- Department of Tissue and Cell Culture, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| |
Collapse
|
7
|
The Effect of Caffeine and Trifluralin on Chromosome Doubling in Wheat Anther Culture. PLANTS 2020; 9:plants9010105. [PMID: 31952150 PMCID: PMC7020159 DOI: 10.3390/plants9010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
Abstract
Challenges for wheat doubled haploid (DH) production using anther culture include genotype variability in green plant regeneration and spontaneous chromosome doubling. The frequency of chromosome doubling in our program can vary from 14% to 80%. Caffeine or trifluralin was applied at the start of the induction phase to improve early genome doubling. Caffeine treatment at 0.5 mM for 24 h significantly improved green plant production in two of the six spring wheat crosses but had no effect on the other crosses. The improvements were observed in Trojan/Havoc and Lancer/LPB14-0392, where green plant numbers increased by 14% and 27% to 161 and 42 green plants per 30 anthers, respectively. Caffeine had no significant effect on chromosome doubling, despite a higher frequency of doubling in several caffeine treatments in the first experiment (67-68%) compared to the control (56%). In contrast, trifluralin significantly improved doubling following a 48 h treatment, from 38% in the control to 51% and 53% in the 1 µM and 3 µM trifluralin treatments, respectively. However, trifluralin had a significant negative effect on green plant regeneration, declining from 31.8 green plants per 20 anthers (control) to 9-25 green plants per 20 anthers in the trifluralin treatments. Further work is required to identify a treatment regime with caffeine and/or anti-mitotic herbicides that consistently increases chromosome doubling in wheat without reducing green plant regeneration.
Collapse
|
8
|
Weigt D, Niemann J, Siatkowski I, Zyprych-Walczak J, Olejnik P, Kurasiak-Popowska D. Effect of Zearalenone and Hormone Regulators on Microspore Embryogenesis in Anther Culture of Wheat. PLANTS 2019; 8:plants8110487. [PMID: 31717618 PMCID: PMC6918171 DOI: 10.3390/plants8110487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
The purpose of this work was to assess the impact of zearalenone (ZEN) and selected hormone regulators on the effectiveness of microspore embryogenesis in anther culture of wheat. The plant material comprised F1 hybrids of winter and spring wheat. Six combinations of media inducing microspore proliferation and formation of embryogenic structures were investigated: two combinations of growth regulators (D - 2,4-D + dicamba, K - 2,4-D + kinetin), each with three ZEN concentrations (0 mL/L, 0.1 mL/L, 0.2 mL/L). A significant increase in microspore embryogenesis effectiveness on media with the addition of ZEN was observed both at the stages of its induction and the formation of green plants in some genotypes. In case of both combinations of growth regulators, an increased concentration of ZEN resulted in more effective induction of microspore embryogenesis. The most effective induction medium was the D medium supplemented with 0.2 mL/L ZEN. As a result of the use of zearalenone together with two combinations of growth regulators, all genotypes tested produced androgenic structures, which indicates the breakdown of genotypic recalcitrant in the analysed hybrids. In addition, green plants were obtained from 18 out of 19 tested hybrids. The addition of ZEN to the medium did not affect the number of regenerated albino plants nor the number of spontaneous genome doublings proportion.
Collapse
Affiliation(s)
- Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
- Correspondence:
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60–637 Poznań, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60–637 Poznań, Poland
| | - Przemysław Olejnik
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| | - Danuta Kurasiak-Popowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60–632 Poznań, Poland
| |
Collapse
|
9
|
Koeppel I, Hertig C, Hoffie R, Kumlehn J. Cas Endonuclease Technology-A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. Int J Mol Sci 2019; 20:ijms20112647. [PMID: 31146387 PMCID: PMC6600890 DOI: 10.3390/ijms20112647] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
Domestication and breeding have created productive crops that are adapted to the climatic conditions of their growing regions. Initially, this process solely relied on the frequent occurrence of spontaneous mutations and the recombination of resultant gene variants. Later, treatments with ionizing radiation or mutagenic chemicals facilitated dramatically increased mutation rates, which remarkably extended the genetic diversity of crop plants. However, a major drawback of conventionally induced mutagenesis is that genetic alterations occur simultaneously across the whole genome and at very high numbers per individual plant. By contrast, the newly emerging Cas endonuclease technology allows for the induction of mutations at user-defined positions in the plant genome. In fundamental and breeding-oriented research, this opens up unprecedented opportunities for the elucidation of gene functions and the targeted improvement of plant performance. This review covers historical aspects of the development of customizable endonucleases, information on the mechanisms of targeted genome modification, as well as hitherto reported applications of Cas endonuclease technology in barley and wheat that are the agronomically most important members of the temperate cereals. Finally, current trends in the further development of this technology and some ensuing future opportunities for research and biotechnological application are presented.
Collapse
Affiliation(s)
- Iris Koeppel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Christian Hertig
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Robert Hoffie
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany.
| |
Collapse
|
10
|
Liu L, Lu Y, Wei L, Yu H, Cao Y, Li Y, Yang N, Song Y, Liang C, Wang T. Transcriptomics analyses reveal the molecular roadmap and long non-coding RNA landscape of sperm cell lineage development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:421-437. [PMID: 30047180 DOI: 10.1111/tpj.14041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells. Sperm cell lineage development involves global repression of genes for pluripotency, somatic development and metabolism following asymmetric microspore division and coordinated upregulation of GC/SC preferential genes. This process is accompanied by progressive loss of the active marks H3K4me3 and H3K9ac, and accumulation of the repressive methylation mark H3K9. The SC lineage has a higher ratio of lncRNAs to mRNAs and preferentially expresses a larger percentage of lncRNAs than does the non-SC lineage. A co-expression network showed that the largest set of lncRNAs in these nodes, with more than 100 links, are GC-preferential, and a small proportion of lncRNAs co-express with their neighboring genes. Single molecular fluorescence in situ hybridization showed that several candidate genes may be markers distinguishing the three cell types of the SC lineage. Our findings reveal the molecular programming and potential roles of lncRNAs in SC lineage development.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunlong Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqin Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hua Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinghao Cao
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengzhi Liang
- Research Center for Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Wendler N, Mascher M, Himmelbach A, Bini F, Kumlehn J, Stein N. A High-Density, Sequence-Enriched Genetic Map of Hordeum bulbosum and Its Collinearity to H. vulgare. THE PLANT GENOME 2017; 10. [PMID: 29293821 DOI: 10.3835/plantgenome2017.06.0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
L., a wild grass and close relative of cultivated barley ( L.), gained importance in plant breeding as inducer of haploid plants in crosses with barley and also as a genetic resource for introgression of disease resistance/tolerance genes into cultivated barley. Genetic mapping of genes introgressed from is a prerequisite for their efficient utilization in barley breeding, but often hindered due to repressed recombination. The mechanism underlying the reduced frequency or lack of meiotic recombination between . and . chromatin in introgressed segments is not understood. It may be explained by lack of genome collinearity or other structural differences between both genomes. In the present study, two F mapping populations of were analyzed by genotyping-by-sequencing (GBS) and four dense genetic maps containing 1449, 996, 720, and 943 SNP markers, respectively, revealed overall a high degree of collinearity for all seven homeologous linkage groups of and . The patterns of distribution of recombination along chromosomes differed between barley and , indicating organizational differences between both genomes.
Collapse
|
12
|
Pandey P, Daghma DS, Houben A, Kumlehn J, Melzer M, Rutten T. Dynamics of post-translationally modified histones during barley pollen embryogenesis in the presence or absence of the epi-drug trichostatin A. PLANT REPRODUCTION 2017; 30:95-105. [PMID: 28526911 DOI: 10.1007/s00497-017-0302-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 05/11/2023]
Abstract
Improving pollen embryogenesis. Despite the agro-economic importance of pollen embryogenesis, the mechanisms underlying this process are still poorly understood. We describe the dynamics of chromatin modifications (histones H3K4me2, H3K9ac, H3K9me2, and H3K27me3) and chromatin marks (RNA polymerase II CDC phospho-Ser5, and CENH3) during barley pollen embryogenesis. Immunolabeling results show that, in reaction to stress, immature pollen rapidly starts reorganizing several important chromatin modifications indicative of a change in cell fate. This new chromatin modification pattern was accomplished within 24 h from whereon it remained unaltered during subsequent mitotic activity. This indicates that cell fate transition, the central element of pollen embryogenesis, is completed early on during the induction process. Application of the histone deacetylase inhibitor trichostatin A stimulated pollen embryogenesis when used on pollen with a gametophytic style chromatin pattern. However, when this drug was administered to embryogenic pollen, the chromatin markers reversed toward a gametophytic profile, embryogenesis was halted and all pollen invariably died.
Collapse
Affiliation(s)
- Pooja Pandey
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Imperial College London, London, UK
| | - Diaa S Daghma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Institute for Experimental Trauma Surgery, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
13
|
Haploid and Doubled Haploid Techniques in Perennial Ryegrass (Lolium perenne L.) to Advance Research and Breeding. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R. Haploids: Constraints and opportunities in plant breeding. Biotechnol Adv 2015; 33:812-29. [PMID: 26165969 DOI: 10.1016/j.biotechadv.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/04/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to national programs or small-medium private seed for the exploitation of DH technology in plant breeding.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Anne B Britt
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, P. O. Box 30709-00100, Kenya
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India; Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; UWA Institute of Agriculture, University of Western Australia, Crawley WA 6009, Australia; Department of Biology, University of Louisiana at Lafayette, 300 E. St. Mary Blvd, 108 Billeaud Hall, Lafayette, LA 70504, USA
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Department of Plant Breeding, Sundsvagen 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
15
|
Lippmann R, Friedel S, Mock HP, Kumlehn J. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:498. [PMID: 26217352 PMCID: PMC4493395 DOI: 10.3389/fpls.2015.00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/05/2023]
Abstract
Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.
Collapse
Affiliation(s)
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
16
|
|