1
|
Caspari OD, Garrido C, Law CO, Choquet Y, Wollman FA, Lafontaine I. Converting antimicrobial into targeting peptides reveals key features governing protein import into mitochondria and chloroplasts. PLANT COMMUNICATIONS 2023:100555. [PMID: 36733255 PMCID: PMC10363480 DOI: 10.1016/j.xplc.2023.100555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
We asked what peptide features govern targeting to the mitochondria versus the chloroplast, using antimicrobial peptides as a starting point. This approach was inspired by the endosymbiotic hypothesis that organelle-targeting peptides derive from antimicrobial amphipathic peptides delivered by the host cell, to which organelle progenitors became resistant. To explore the molecular changes required to convert antimicrobial into targeting peptides, we expressed a set of 13 antimicrobial peptides in Chlamydomonas reinhardtii. Peptides were systematically modified to test distinctive features of mitochondrion- and chloroplast-targeting peptides, and we assessed their targeting potential by following the intracellular localization and maturation of a Venus fluorescent reporter used as a cargo protein. Mitochondrial targeting can be achieved by some unmodified antimicrobial peptide sequences. Targeting to both organelles is improved by replacing lysines with arginines. Chloroplast targeting is enabled by the presence of flanking unstructured sequences, additional constraints consistent with chloroplast endosymbiosis having occurred in a cell that already contained mitochondria. If indeed targeting peptides evolved from antimicrobial peptides, then required modifications imply a temporal evolutionary scenario with an early exchange of cationic residues and a late acquisition of chloroplast-specific motifs.
Collapse
Affiliation(s)
- Oliver D Caspari
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| | - Clotilde Garrido
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Chris O Law
- Centre for Microscopy and Cellular Imaging, Biology Department Loyola Campus of Concordia University, 7141 Sherbrooke W., Montréal, QC H4B 1R6, Canada
| | - Yves Choquet
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Ingrid Lafontaine
- UMR7141 (CNRS/Sorbonne Université), Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
2
|
A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc Natl Acad Sci U S A 2022; 119:e2208277119. [PMID: 35969755 PMCID: PMC9407449 DOI: 10.1073/pnas.2208277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5′-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.
Collapse
|
3
|
Oberleitner L, Perrar A, Macorano L, Huesgen PF, Nowack ECM. A bipartite chromatophore transit peptide and N-terminal protein processing in the Paulinella chromatophore. PLANT PHYSIOLOGY 2022; 189:152-164. [PMID: 35043947 PMCID: PMC9070848 DOI: 10.1093/plphys/kiac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP). Short imported proteins do not carry discernable targeting signals. To explore whether the import of proteins is accompanied by their N-terminal processing, here we identified N-termini of 208 chromatophore-localized proteins by a mass spectrometry-based approach. Our study revealed extensive N-terminal acetylation and proteolytic processing in both NE and chromatophore-encoded (CE) fractions of the chromatophore proteome. Mature N-termini of 37 crTP-carrying proteins were identified, of which 30 were cleaved in a common processing region. Surprisingly, only the N-terminal ∼50 aa (part 1) become cleaved upon import. This part contains a conserved adaptor protein-1 complex-binding motif known to mediate protein sorting at the trans-Golgi network followed by a predicted transmembrane helix, implying that part 1 anchors the protein co-translationally in the endoplasmic reticulum and mediates trafficking to the chromatophore via the Golgi. The C-terminal part 2 contains conserved secondary structural elements, remains attached to the mature proteins, and might mediate translocation across the chromatophore inner membrane. Short imported proteins remain largely unprocessed. Finally, this work illuminates N-terminal processing of proteins encoded in an evolutionary-early-stage organelle and suggests host-derived posttranslationally acting factors involved in regulation of the CE chromatophore proteome.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, 52425 Jülich, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
- Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
4
|
Abstract
Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment. Various protocols for enrichment of N-terminal peptides have been established and successfully been used for protease substrate discovery and profiling of N-terminal modification, but often require large amounts of proteome. We have recently established the High-efficiency Undecanal-based N-Termini EnRichment (HUNTER) as a fast and sensitive method to enable enrichment of protein N-termini from limited sample sources with as little as a few microgram proteome. Here we present our current HUNTER protocol for sensitive plant N-terminome profiling, including sample preparation, enrichment of N-terminal peptides, and mass spectrometry data analysis.
Collapse
Affiliation(s)
- Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich, Germany.
- Cologne Cluster of Excellence on Aging-related Disorders, CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
- Institute of Biochemistry, Department for Chemistry , University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
6
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Dissmeyer N. Conditional Protein Function via N-Degron Pathway-Mediated Proteostasis in Stress Physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:83-117. [PMID: 30892918 DOI: 10.1146/annurev-arplant-050718-095937] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The N-degron pathway, formerly the N-end rule pathway, regulates functions of regulatory proteins. It impacts protein half-life and therefore directs the actual presence of target proteins in the cell. The current concept holds that the N-degron pathway depends on the identity of the amino (N)-terminal amino acid and many other factors, such as the follow-up sequence at the N terminus, conformation, flexibility, and protein localization. It is evolutionarily conserved throughout the kingdoms. One possible entry point for substrates of the N-degron pathway is oxidation of N-terminal Cys residues. Oxidation of N-terminal Cys is decisive for further enzymatic modification of various neo-N termini by arginylation that generates potentially neofunctionalized or instable proteoforms. Here, I focus on the posttranslational modifications that are encompassed by protein degradation via the Cys/Arg branch of the N-degron pathway-part of the PROTEOLYSIS 6 (PRT6)/N-degron pathway-as well as the underlying physiological principles of this branch and its biological significance in stress response.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany; ; Twitter: @NDissmeyer
| |
Collapse
|
8
|
Perrar A, Dissmeyer N, Huesgen PF. New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2021-2038. [PMID: 30838411 PMCID: PMC6460961 DOI: 10.1093/jxb/erz104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/27/2019] [Indexed: 05/17/2023]
Abstract
Dynamic regulation of protein function and abundance plays an important role in virtually every aspect of plant life. Diversifying mechanisms at the RNA and protein level result in many protein molecules with distinct sequence and modification, termed proteoforms, arising from a single gene. Distinct protein termini define proteoforms arising from translation of alternative transcripts, use of alternative translation initiation sites, and different co- and post-translational modifications of the protein termini. Also site-specific proteolytic processing by endo- and exoproteases generates truncated proteoforms, defined by distinct protease-generated neo-N- and neo-C-termini, that may exhibit altered activity, function, and localization compared with their precursor proteins. In eukaryotes, the N-degron pathway targets cytosolic proteins, exposing destabilizing N-terminal amino acids and/or destabilizing N-terminal modifications for proteasomal degradation. This enables rapid and selective removal not only of unfolded proteins, but also of substrate proteoforms generated by proteolytic processing or changes in N-terminal modifications. Here we summarize current protocols enabling proteome-wide analysis of protein termini, which have provided important new insights into N-terminal modifications and protein stability determinants, protein maturation pathways, and protease-substrate relationships in plants.
Collapse
Affiliation(s)
- Andreas Perrar
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg, Halle (Saale), Germany
- ScienceCampus Halle – Plant-based Bioeconomy, Halle (Saale), Germany
| | - Pitter F Huesgen
- Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Jülich, Germany
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
10
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
11
|
Kojima S, Iwamoto M, Oiki S, Tochigi S, Takahashi H. Thylakoid membranes contain a non-selective channel permeable to small organic molecules. J Biol Chem 2018; 293:7777-7785. [PMID: 29602906 DOI: 10.1074/jbc.ra118.002367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
The thylakoid lumen is a membrane-enclosed aqueous compartment. Growing evidence indicates that the thylakoid lumen is not only a sink for protons and inorganic ions translocated during photosynthetic reactions but also a place for metabolic activities, e.g. proteolysis of photodamaged proteins, to sustain efficient photosynthesis. However, the mechanism whereby organic molecules move across the thylakoid membranes to sustain these lumenal activities is not well understood. In a recent study of Cyanophora paradoxa chloroplasts (muroplasts), we fortuitously detected a conspicuous diffusion channel activity in the thylakoid membranes. Here, using proteoliposomes reconstituted with the thylakoid membranes from muroplasts and from two other phylogenetically distinct organisms, cyanobacterium Synechocystis sp. PCC 6803 and spinach, we demonstrated the existence of nonselective channels large enough for enabling permeation of small organic compounds (e.g. carbohydrates and amino acids with Mr < 1500) in the thylakoid membranes. Moreover, we purified, identified, and characterized a muroplast channel named here CpTPOR. Osmotic swelling experiments revealed that CpTPOR forms a nonselective pore with an estimated radius of ∼1.3 nm. A lipid bilayer experiment showed variable-conductance channel activity with a typical single-channel conductance of 1.8 nS in 1 m KCl with infrequent closing transitions. The CpTPOR amino acid sequence was moderately similar to that of a voltage-dependent anion-selective channel of the mitochondrial outer membrane, although CpTPOR exhibited no obvious selectivity for anions and no voltage-dependent gating. We propose that transmembrane diffusion pathways are ubiquitous in the thylakoid membranes, presumably enabling rapid transfer of various metabolites between the lumen and stroma.
Collapse
Affiliation(s)
- Seiji Kojima
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan, .,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Masayuki Iwamoto
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Saeko Tochigi
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan.,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Hideyuki Takahashi
- the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| |
Collapse
|
12
|
Garg SG, Gould SB. The Role of Charge in Protein Targeting Evolution. Trends Cell Biol 2016; 26:894-905. [PMID: 27524662 DOI: 10.1016/j.tcb.2016.07.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Two eukaryotic compartments are of endosymbiotic origin, the mitochondrion and plastid. These organelles need to import hundreds of proteins from the cytosol. The import machineries of both are of independent origin, but function in a similar fashion and recognize N-terminal targeting sequences that also share similarities. Targeting, however, is generally specific, even though plastid targeting evolved in the presence of established mitochondrial targeting. Here we review current advances on protein import into mitochondria and plastids from diverse eukaryotic lineages and highlight the impact of charged amino acids in targeting. Their presence or absence alone can determine localization, and comparisons across diverse eukaryotes, and their different types of mitochondria and plastids, uncover unexplored avenues of protein import research.
Collapse
Affiliation(s)
- Sriram G Garg
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|