1
|
Maas PJM, Maas-van de Kamer H, André T, Skinner D, Valderrama E, Specht CD. Eighteen new species of Neotropical Costaceae (Zingiberales). PHYTOKEYS 2023; 222:75-127. [PMID: 37252638 PMCID: PMC10210046 DOI: 10.3897/phytokeys.222.87779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/19/2023] [Indexed: 05/31/2023]
Abstract
In preparation for a full taxonomic revision of the Neotropical genera of Costaceae (i.e., Chamaecostus, Costus, Dimerocostus, and Monocostus), we present the description of 17 new species of Neotropical Costus and one new species of the Neotropic endemic genus Chamaecostus with notes on their distribution and ecology, vernacular names (when known), and diagnostic characters for identification. Distribution maps are included for all species, and each description is accompanied by photographic plates illustrating diagnostic characters.
Collapse
Affiliation(s)
- Paul J. M. Maas
- Naturalis Biodiversity Centre, Botany, P.O. Box 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CentreLeidenNetherlands
| | - Hiltje Maas-van de Kamer
- Naturalis Biodiversity Centre, Botany, P.O. Box 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CentreLeidenNetherlands
| | - Thiago André
- Universidade de Brasília, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília (DF), BrazilUniversidade de BrasíliaBrasíliaBrazil
| | - David Skinner
- Le Jardin Ombragé, Tallahassee, (Private botanical garden, Botanic Gardens Conservation International – BGCI – registration ID 50148), Florida, USALe Jardin OmbragéTallahasseeUnited States of America
| | - Eugenio Valderrama
- Cornell University, Section of Plant Biology and the L.H.Bailey Hortorium, School of Integrative Plant Science, Ithaca, NY, USACornell UniversityIthacaUnited States of America
| | - Chelsea D. Specht
- Cornell University, Section of Plant Biology and the L.H.Bailey Hortorium, School of Integrative Plant Science, Ithaca, NY, USACornell UniversityIthacaUnited States of America
| |
Collapse
|
2
|
Zhao S, Zhang Y, Tan M, Jiao J, Zhang C, Wu P, Feng K, Li L. Identification of YABBY Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. PLANTS (BASEL, SWITZERLAND) 2023; 12:380. [PMID: 36679092 PMCID: PMC9866709 DOI: 10.3390/plants12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The plant-specific transcription factor family YABBY plays important roles in plant responses to biotic and abiotic stresses. Although the function of YABBY has been identified in many species, systematic analysis in lotus (Nelumbo nucifera) is still relatively lacking. The present study aimed to characterize all of the YABBY genes in lotus and obtain better insights into NnYABBYs in response to salt stress by depending on ABA signaling. Here, we identified nine YABBY genes by searching the whole lotus genome based on the conserved YABBY domain. Further analysis showed that these members were distributed on six different chromosomes and named from YABBY1 to YABBY9, which were divided into five subgroups, including YAB1, YAB2, YAB5, INO, and CRC. The analysis of cis-elements in promotors revealed that NnYABBYs could be involved in plant hormone signaling and plant responses to abiotic stresses. Quantitative real-time PCR (qRT-PCR) showed that NnYABBYs could be up-regulated or down-regulated by ABA, fluridone, and salt treatment. Subcellular localization indicated that NnYABBY4, NnYABBY5, and NnYABBY6 were mainly localized in the cell membrane and cytoplasm. In addition, the intrinsic trans-activity of NnYABBY was tested by a Y2H assay, which revealed that NnYABBY4, NnYABBY5, and NnYABBY6 are deprived of such a property. This study provided a theoretical basis and reference for the functional research of YABBY for the molecular breeding of lotus.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Yu Q, Zhao T, Zhao H, Specht CD, Tian X, Liao J. Correlation between Inflorescence Architecture and Floral Asymmetry-Evidence from Aberrant Flowers in Canna L. (Cannaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2512. [PMID: 36235378 PMCID: PMC9571657 DOI: 10.3390/plants11192512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Floral symmetry studies often focus on the development of monosymmetric and polysymmetric flowers, whereas asymmetric flowers and their position and function within the inflorescence structure are largely neglected. Cannaceae is one of the few families that possesses truly asymmetric flowers, serving as a model to study the characters and mechanisms involved in the development of floral asymmetry and its context within the developing and mature inflorescence. In this study, inflorescence structure and floral morphology of normal asymmetric flowers and 16 aberrant flower collections from Canna indica L. and C. glauca L. were photographed, analyzed, and compared with attention to stamen petaloidy, floral symmetry, and inflorescence branching patterns anterior and posterior to the aberrant flower. In comparison with normal flowers, the aberrant flowers are arranged into abnormal partial florescences, and vary in floral symmetry, orientation, and degree of androecial petaloidy. The appendage of the fertile stamen is universally located distal from the higher order bract, indicating an underlying influence of inflorescence architecture. A synthetic model is proposed to explain the relationship between floral symmetry and inflorescence structure. Data from the observation of aberrant phenotypes strongly support the hypothesis that irregular petaloidy of the stamens is correlated with an asymmetric morphogenetic field within the inflorescence that contributes to the overall floral asymmetry in Canna flowers.
Collapse
Affiliation(s)
- Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Tong Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Haichan Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu 527400, China
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Foshan Institute of Forestry, Foshan 528222, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kramer H, André T, Grunder N, Sass C, Pinilla-Vargas M, Guan CJ, Phillips HR, de Almeida AMR, Specht CD. The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L. FRONTIERS IN PLANT SCIENCE 2022; 13:874322. [PMID: 36161003 PMCID: PMC9493542 DOI: 10.3389/fpls.2022.874322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Selection together with variation in floral traits can act to mold floral form, often driven by a plant's predominant or most effective pollinators. To investigate the evolution of traits associated with pollination, we developed a phylogenetic framework for evaluating tempo and mode of pollination shifts across the genus Costus L., known for its evolutionary toggle between traits related to bee and bird pollination. Using a target enrichment approach, we obtained 957 loci for 171 accessions to expand the phylogenetic sampling of Neotropical Costus. In addition, we performed whole genome resequencing for a subset of 20 closely related species with contrasting pollination syndromes. For each of these 20 genomes, a high-quality assembled transcriptome was used as reference for consensus calling of candidate loci hypothesized to be associated with pollination-related traits of interest. To test for the role these candidate genes may play in evolutionary shifts in pollinators, signatures of selection were estimated as dN/dS across the identified candidate loci. We obtained a well-resolved phylogeny for Neotropical Costus despite conflict among gene trees that provide evidence of incomplete lineage sorting and/or reticulation. The overall topology and the network of genome-wide single nucleotide polymorphisms (SNPs) indicate that multiple shifts in pollination strategy have occurred across Costus, while also suggesting the presence of previously undetected signatures of hybridization between distantly related taxa. Traits related to pollination syndromes are strongly correlated and have been gained and lost in concert several times throughout the evolution of the genus. The presence of bract appendages is correlated with two traits associated with defenses against herbivory. Although labellum shape is strongly correlated with overall pollination syndrome, we found no significant impact of labellum shape on diversification rates. Evidence suggests an interplay of pollination success with other selective pressures shaping the evolution of the Costus inflorescence. Although most of the loci used for phylogenetic inference appear to be under purifying selection, many candidate genes associated with functional traits show evidence of being under positive selection. Together these results indicate an interplay of phylogenetic history with adaptive evolution leading to the diversification of pollination-associated traits in Neotropical Costus.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Dave Skinner
- Le Jardin Ombragé, Tallahassee, FL, United States
| | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Nikolaus Grunder
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, United States
| | - Chodon Sass
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Heather R. Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Ashokan A, Leong-Škorničková J, Suksathan P, Newman M, Kress WJ, Gowda V. Floral evolution and pollinator diversification in Hedychium: Revisiting Darwin's predictions using an integrative taxonomic approach. AMERICAN JOURNAL OF BOTANY 2022; 109:1410-1427. [PMID: 35862825 DOI: 10.1002/ajb2.16039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Hedychium J. Koenig (Zingiberaceae) is endemic to the Indo-Malayan Realm and is known for its colorful and fragrant flowers. Historically, two different pollination syndromes characterize Hedychium: diurnal or bird pollination, and nocturnal or moth pollination. In this study, we aim to understand the evolution of nocturnal and diurnal flowers, and to test its putative association with lineage diversification in Hedychium. METHODS A molecular tree of Hedychium was used as a scaffold upon which we estimated ancestral character states, phylogenetic signals, and correlations for certain categorical and continuous floral traits. Furthermore, we used phylomorphospace and trait-dependent diversification rate estimation analyses to understand phenotypic evolution and associated lineage diversification in Hedychium. RESULTS Although floral color and size lacked any association with specific pollinators, white or pale flowers were most common in the early branching clades when compared to bright-colored flowers, which were more widely represented in the most-derived clade IV. Five categorical and two continuous characters were identified to have informative evolutionary patterns, which also emphasized that ecology may have played a critical role in the diversification of Hedychium. CONCLUSIONS From our phylogenetic analyses and ecological observations, we conclude that specializations in pollinator interactions are rare in the hyperdiverse clade IV, thus challenging the role of both moth-specialization and bird-specialization as central factors in the diversification of Hedychium. However, our results also suggest that clade III (predominantly island clade) may show specializations, and future studies should investigate ecological and pollinator interactions, along with inclusion of new traits such as floral fragrance and anthesis time.
Collapse
Affiliation(s)
- Ajith Ashokan
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| | - Jana Leong-Škorničková
- Research & Conservation branch, Singapore Botanic Gardens, 1 Cluny Road, 259569, Singapore
| | - Piyakaset Suksathan
- Herbarium (QBG), Queen Sirikit Botanic Garden, P. O. Box 7, Mae Rim, Chiang Mai, 50180, Thailand
| | - Mark Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland, United Kingdom
| | - W John Kress
- Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, P. O. Box 37012, Washington, DC, 20013-7012, United States
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
6
|
Romanova MA, Maksimova AI, Pawlowski K, Voitsekhovskaja OV. YABBY Genes in the Development and Evolution of Land Plants. Int J Mol Sci 2021; 22:4139. [PMID: 33923657 PMCID: PMC8074164 DOI: 10.3390/ijms22084139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
Mounting evidence from genomic and transcriptomic studies suggests that most genetic networks regulating the morphogenesis of land plant sporophytes were co-opted and modified from those already present in streptophyte algae and gametophytes of bryophytes sensu lato. However, thus far, no candidate genes have been identified that could be responsible for "planation", a conversion from a three-dimensional to a two-dimensional growth pattern. According to the telome theory, "planation" was required for the genesis of the leaf blade in the course of leaf evolution. The key transcription factors responsible for leaf blade development in angiosperms are YABBY proteins, which until recently were thought to be unique for seed plants. Yet, identification of a YABBY homologue in a green alga and the recent findings of YABBY homologues in lycophytes and hornworts suggest that YABBY proteins were already present in the last common ancestor of land plants. Thus, these transcriptional factors could have been involved in "planation", which fosters our understanding of the origin of leaves. Here, we summarise the current data on functions of YABBY proteins in the vegetative and reproductive development of diverse angiosperms and gymnosperms as well as in the development of lycophytes. Furthermore, we discuss a putative role of YABBY proteins in the genesis of multicellular shoot apical meristems and in the evolution of leaves in early divergent terrestrial plants.
Collapse
Affiliation(s)
- Marina A. Romanova
- Department of Botany, St. Petersburg State University, Universitetskaya Nab. 7/9, 190034 Saint Petersburg, Russia
| | - Anastasiia I. Maksimova
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia;
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia;
- Saint Petersburg Electrotechnical University “LETI”, ul. Professora Popova 5, 197022 Saint Petersburg, Russia
| |
Collapse
|
7
|
Liu X, Liao XY, Zheng Y, Zhu MJ, Yu X, Jiang YT, Zhang DY, Ma L, Xu XY, Liu ZJ, Lan S. Genome-Wide Identification of the YABBY Gene Family in Seven Species of Magnoliids and Expression Analysis in Litsea. PLANTS (BASEL, SWITZERLAND) 2020; 10:E21. [PMID: 33374250 PMCID: PMC7824534 DOI: 10.3390/plants10010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
The YABBY gene family, specific to seed plants, encodes a class of transcription factors in the lamina maintenance and development of lateral organs. Magnoliids are sisters to the clade-containing eudicots and monocots, which have rapidly diversified among the common ancestors of these three lineages. However, prior to this study, information on the function of the YABBY genes in magnoliids was extremely limited to the third major clades and the early diverging lineage of Mesangiospermae. In this study, the sum of 55 YABBY genes including five genes in INO, six in CRC, eight in YAB2, 22 in YAB5, and 14 in FIL clade were identified from seven magnoliid plants. Sequence analysis showed that all encoded YABBY protein sequences possess the highly conserved YABBY domain and C2C2 zinc-finger domain. Gene and protein structure analysis indicates that a certain number of exons were highly conserved and similar in the same class, and YABBY genes encode proteins of 71-392 amino acids and an open reading frame of 216-1179 bp in magnoliids. Additionally, the predicted molecular weight and isoelectric point of YABBY proteins in three species ranged from 7689.93 to 43578.13 and from 5.33 to 9.87, respectively. Meanwhile, the YABBY gene homolog expression of Litsea was detected at a temporal and spatial level during various developmental stages of leaf and reproductive tissues. This research could provide a brief overview of YABBY gene family evolution and its differential expression in magnoliids. Therefore, this comprehensive diversification analysis would provide a new insight into further understanding of the function of genes in seven magnoliids.
Collapse
Affiliation(s)
- Xuedie Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Xing-Yu Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Yu Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Meng-Jia Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Yu-Ting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Di-Yang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Liang Ma
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Xin-Yu Xu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| | - Siren Lan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (X.-Y.L.); (Y.Z.); (M.-J.Z.); (Y.-T.J.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Colleage of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (D.-Y.Z.); (L.M.); (X.-Y.X.); (Z.-J.L.)
| |
Collapse
|
8
|
Yu Q, Tian X, Lin C, Specht CD, Liao J. Expression and Function Studies of CYC/ TB1-Like Genes in the Asymmetric Flower Canna (Cannaceae, Zingiberales). FRONTIERS IN PLANT SCIENCE 2020; 11:580576. [PMID: 33343594 PMCID: PMC7746682 DOI: 10.3389/fpls.2020.580576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
The asymmetric flower, lacking any plane of symmetry, is rare among angiosperms. Canna indica L. has conspicuously asymmetric flowers resulting from the presence of a half-fertile stamen, while the other androecial members develop as petaloid staminodes or abort early during development. The molecular basis of the asymmetric distribution of fertility and petaloidy in the androecial whorls remains unknown. Ontogenetic studies have shown that Canna flowers are borne on monochasial (cincinnus) partial florescences within a racemose inflorescence, with floral asymmetry likely corresponding to the inflorescence architecture. Given the hypothesized role of CYC/TB1 genes in establishing floral symmetry in response to the influence of the underlying inflorescence architecture, the spatiotemporal expression patterns of three Canna CYC/TB1 homologs (CiTBL1a, CiTBL1b-1, and CiTBL1b-2) were analyzed during inflorescence and floral development using RNA in situ hybridization and qRT-PCR. In the young inflorescence, both CiTBL1a and CiTBL1b-1 were found to be expressed in the bracts and at the base of the lateral florescence branches, whereas transcripts of CiTBL1b-2 were mainly detected in flower primordia and inflorescence primordia. During early flower development, expression of CiTBL1a and CiTBL1b-1 were both restricted to the developing sepals and petals. In later flower development, expression of CiTBL1a was reduced to a very low level while CiTBL1b-1 was detected with extremely high expression levels in the petaloid androecial structures including the petaloid staminodes, the labellum, and the petaloid appendage of the fertile stamen. In contrast, expression of CiTBL1b-2 was strongest in the fertile stamen throughout flower development, from early initiation of the stamen primordium to maturity of the ½ anther. Heterologous overexpression of CiTBL genes in Arabidopsis led to dwarf plants with smaller petals and fewer stamens, and altered the symmetry of mature flowers. These data provide evidence for the involvement of CYC/TB1 homologs in the development of the asymmetric Cannaceae flower.
Collapse
Affiliation(s)
- Qianxia Yu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xueyi Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Canjia Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China
- Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology/Economic Botany/Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Plus ça change, plus c'est la même chose: The developmental evolution of flowers. Curr Top Dev Biol 2019; 131:211-238. [DOI: 10.1016/bs.ctdb.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Almeida AMR, Piñeyro-Nelson A, Yockteng RB, Specht CD. Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ 2018; 6:e5490. [PMID: 30155368 PMCID: PMC6110254 DOI: 10.7717/peerj.5490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.
Collapse
Affiliation(s)
- Ana Maria R Almeida
- Department of Biological Sciences, California State University, Hayward, Hayward, CA, United States of America
| | - Alma Piñeyro-Nelson
- Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, DF, Mexico
| | - Roxana B Yockteng
- Centro de Investigaciones Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá, Colombia.,Institut de Systématique, Evolution, Biodiversité-UMR-CNRS, National Museum of Natural History, Paris, France
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
11
|
Shchennikova AV, Slugina MA, Beletsky AV, Filyushin MA, Mardanov AA, Shulga OA, Kochieva EZ, Ravin NV, Skryabin KG. The YABBY Genes of Leaf and Leaf-Like Organ Polarity in Leafless Plant Monotropa hypopitys. Int J Genomics 2018; 2018:7203469. [PMID: 29850475 PMCID: PMC5941816 DOI: 10.1155/2018/7203469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 03/18/2018] [Indexed: 11/18/2022] Open
Abstract
Monotropa hypopitys is a mycoheterotrophic, nonphotosynthetic plant acquiring nutrients from the roots of autotrophic trees through mycorrhizal symbiosis, and, similar to other extant plants, forming asymmetrical lateral organs during development. The members of the YABBY family of transcription factors are important players in the establishment of leaf and leaf-like organ polarity in plants. This is the first report on the identification of YABBY genes in a mycoheterotrophic plant devoid of aboveground vegetative organs. Seven M. hypopitys YABBY members were identified and classified into four clades. By structural analysis of putative encoded proteins, we confirmed the presence of YABBY-defining conserved domains and identified novel clade-specific motifs. Transcriptomic and qRT-PCR analyses of different tissues revealed MhyYABBY transcriptional patterns, which were similar to those of orthologous YABBY genes from other angiosperms. These data should contribute to the understanding of the role of the YABBY genes in the regulation of developmental and physiological processes in achlorophyllous leafless plants.
Collapse
Affiliation(s)
- Anna V. Shchennikova
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Marya A. Slugina
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexey V. Beletsky
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Mikhail A. Filyushin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Andrey A. Mardanov
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Olga A. Shulga
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Elena Z. Kochieva
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolay V. Ravin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
| | - Konstantin G. Skryabin
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Moscow 119071, Russia
- Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
12
|
Filyushin MA, Slugina MA, Shchennikova AV, Kochieva EZ. YABBY3-Orthologous Genes in Wild Tomato Species: Structure, Variability, and Expression. Acta Naturae 2017; 9:101-109. [PMID: 29340223 PMCID: PMC5762834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 11/10/2022] Open
Abstract
Evolution of the genes encoding YABBY transcription factors is believed to be one of the key reasons for flat leaf emergence from the radially symmetrical stem and gynoecium diversity. YABBY genes determine the identity of the abaxial surface of all aboveground lateral organs in seed plants. In the present study, complete sequences of YABBY3-orthologous genes were identified and characterized in 13 accessions of cultivated and wild tomato species with diverse morphophysiology of leaves, flowers, and fruits. The obtained gene sequences showed high homology (95-99%) and an identical exon-intron structure with the known S. lycopersicum YABBY3 gene, and they contained sequences that encode the conserved HMG-like YABBY and Cys2Cys2-zinc-finger domains. In total, in the analyzed YABBY3 genes, 317 variable sites were found, wherein 8 of 24 exon-specific SNPs were nonsynonymous. In the vegetative and reproductive organs of red-fruited and green-fruited tomato species, YABBY3 gene expression was similar to that in S. pimpinellifolium described earlier, but it demonstrated interspecies differences at the leaf-, bud- and flower-specific expression levels.
Collapse
Affiliation(s)
- M. A. Filyushin
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Leninsky pr. 33, bldg. 2, Moscow, 119071, Russia
| | - M. A. Slugina
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Leninsky pr. 33, bldg. 2, Moscow, 119071, Russia
- Department of Biotechnology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - A. V. Shchennikova
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Leninsky pr. 33, bldg. 2, Moscow, 119071, Russia
| | - E. Z. Kochieva
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Leninsky pr. 33, bldg. 2, Moscow, 119071, Russia
- Department of Biotechnology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| |
Collapse
|