1
|
Saha S, Purkayastha S, K N, Ganguly S, Das S, Ganguly S, Sinha Mahapatra N, Bhattacharya K, Das D, Saha AK, Biswas T, Bhattacharyya PK, Bhattacharyya S. Rice ( Oryza sativa) alleviates photosynthesis and yield loss by limiting specific leaf weight under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:267-276. [PMID: 36624487 DOI: 10.1071/fp22241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The physiological mechanisms of shade tolerance and trait plasticity variations under shade remain poorly understood in rice (Oryza sativa L.). Twenty-five genotypes of rice were evaluated under open and shade conditions. Various parameters to identify variations in the plasticity of these traits in growth irradiance were measured. We found wide variations in specific leaf weight (SLW) and net assimilation rate measured at 400µmolm-2 s-1 photosynthetic photon flux density (PPFD; referred to as A 400 ) among the genotypes. Under shade, tolerant genotypes maintained a high rate of net photosynthesis by limiting specific leaf weight accompanied by increased intercellular CO2 concentration (C i ) compared with open-grown plants. On average, net photosynthesis was enhanced by 20% under shade, with a range of 2-30%. Increased accumulation of biomass under shade was observed, but it showed no correlation with photosynthetic plasticity. Chlorophyll a /b ratio also showed no association with photosynthetic rate and yield. Analysis of variance showed that 11%, 16%, and 37% of the total variance of A 400 , SLW, and C i were explained due to differences in growth irradiance. SLW and A 400 plasticity in growth irradiance was associated with yield loss alleviation with R 2 values of 0.37 and 0.16, respectively. Biomass accumulation was associated with yield loss alleviation under shade, but no correlation was observed between A 400 and leaf-N concentration. Thus, limiting specific leaf weight accompanied by increased C i rather than leaf nitrogen concentration might have allowed rice genotypes to maintain a high net photosynthesis rate per unit leaf area and high yield under shade.
Collapse
Affiliation(s)
- Shoumik Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shampa Purkayastha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nimitha K
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Sebantee Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Subhadeep Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Shamba Ganguly
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Nilanjan Sinha Mahapatra
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Kriti Bhattacharya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Dibakar Das
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Arup K Saha
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Tirthankar Biswas
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Prabir K Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Crop Research Unit, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, PIN 741252, West Bengal, India
| |
Collapse
|
2
|
Expression profiling of TaARGOS homoeologous drought responsive genes in bread wheat. Sci Rep 2022; 12:3595. [PMID: 35246579 PMCID: PMC8897478 DOI: 10.1038/s41598-022-07637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Drought tolerant germplasm is needed to increase crop production, since water scarcity is a critical bottleneck in crop productivity worldwide. Auxin Regulated Gene involved in Organ Size (ARGOS) is a large protein family of transcription factors that plays a vital role in organ size, plant growth, development, and abiotic stress responses in plants. Although, the ARGOS gene family has been discovered and functionalized in a variety of crop plants, but a comprehensive and systematic investigation of ARGOS genes in locally used commercial wheat cultivars is still yet to be reported. The relative expression of three highly conserved TaARGOS homoeologous genes (TaARGOS-A, TaARGOS-B, TaARGOS-D) was studied in three drought-tolerant (Pakistan-2013, NARC-2009 and NR-499) and three sensitive (Borlaug-2016, NR-514 and NR-516) wheat genotypes under osmotic stress, induced by PEG-6000 at 0 (exogenous control), 2, 4, 6, and 12 h. The normalization of target genes was done using β-actin as endogenous control, whereas DREB3, as a marker gene was also transcribed, reinforcing the prevalence of dehydration in all stress treatments. Real-time quantitative PCR revealed that osmotic stress induced expression of the three TaARGOS transcripts in different wheat seedlings at distinct timepoints. Overall, all genes exhibited significantly higher expression in the drought-tolerant genotypes as compared to the sensitive ones. For instance, the expression profile of TaARGOS-A and TaARGOS-D showed more than threefold increase at 2 h and six to sevenfold increase after 4 h of osmotic stress. However, after 6 h of osmotic stress these genes started to downregulate, and the lowest gene expression was noticed after 12 h of osmotic stress. Among all the homoeologous genes, TaARGOS-D, in particular, had a more significant influence on controlling plant growth and drought tolerance as it showed the highest expression. Altogether, TaARGOSs are involved in seedling establishment and overall plant growth. In addition, the tolerant group of genotypes had a much greater relative fold expression than the sensitive genotypes. Ultimately, Pakistan-2013 showed the highest relative expression of the studied genes than other genotypes which shows its proficiency to mitigate osmotic stress. Therefore, it could be cultivated in arid and semi-arid regions under moisture-deficient regimes. These findings advocated the molecular mechanism and regulatory roles of TaARGOS genes in plant growth and osmotic stress tolerance in contrasting groups of wheat genotypes, accompanied by the genetic nature of identified genotypes in terms of their potential for drought tolerance.
Collapse
|
3
|
Acevedo-Siaca LG, Coe R, Quick WP, Long SP. Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1282-1294. [PMID: 33159790 PMCID: PMC7904153 DOI: 10.1093/jxb/eraa520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Several breeding initiatives have sought to improve flag leaf performance as its health and physiology are closely correlated to rice yield. Previous studies have described natural variation of photosynthesis for flag leaves; however, none has examined their performance under the non-steady-state conditions that prevail in crop fields. Photosynthetic induction is the transient response of photosynthesis to a change from low to high light. Rice flag leaf photosynthesis was measured in both steady- and non-steady-state conditions to characterize natural variation. Between the lowest and highest performing accession, there was a 152% difference for average CO2 assimilation during induction (Ā300), a 77% difference for average intrinsic water use efficiency during induction (iWUEavg), and a 185% difference for the speed of induction (IT50), indicating plentiful variation. No significant correlation was found between steady- and non-steady-state photosynthetic traits. Additionally, measures of neither steady-state nor non-steady-state photosynthesis of flag leaves correlated with the same measures of leaves in the vegetative growth stage, with the exception of iWUEavg. Photosynthetic induction was measured at six [CO2], to determine biochemical and diffusive limitations to photosynthesis in vivo. Photosynthetic induction in rice flag leaves was limited primarily by biochemistry.
Collapse
Affiliation(s)
- Liana G Acevedo-Siaca
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert Coe
- High Resolution Plant Phenomics Centre, Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Canberra, Australia
| | - W Paul Quick
- C4 Rice Center, International Rice Research Institute, Los Baños, Laguna, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Stephen P Long
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
4
|
|
5
|
Kumar K, Neelam K, Singh G, Mathan J, Ranjan A, Brar DS, Singh K. Production and cytological characterization of a synthetic amphiploid derived from a cross between Oryza sativa and Oryza punctata. Genome 2019; 62:705-714. [PMID: 31330117 DOI: 10.1139/gen-2019-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oryza punctata Kotschy ex Steud. (BB, 2n = 24) is a wild species of rice that has many useful agronomic traits. An interspecific hybrid (AB, 2n = 24) was produced by crossing O. punctata and Oryza sativa variety Punjab Rice 122 (PR122, AA, 2n = 24) to broaden the narrow genetic base of cultivated rice. Cytological analysis of the pollen mother cells (PMCs) of the interspecific hybrids confirmed that they have 24 chromosomes. The F1 hybrids showed the presence of 19-20 univalents and 1-3 bivalents. The interspecific hybrid was treated with colchicine to produce a synthetic amphiploid (AABB, 2n = 48). Pollen fertility of the synthetic amphiploid was found to be greater than 50% and partial seed set was observed. Chromosome numbers in the PMCs of the synthetic amphiploid were 24II, showing normal pairing. Flow cytometric analysis also confirmed doubled genomic content in the synthetic amphiploid. Leaf morphological and anatomical studies of the synthetic amphiploid showed higher chlorophyll content and enlarged bundle sheath cells as compared with both of its parents. The synthetic amphiploid was backcrossed with PR122 to develop a series of addition and substitution lines for the transfer of useful genes from O. punctata with least linkage drag.
Collapse
Affiliation(s)
- Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,Faculty Centre on Integrated Rural Development and Management, Ramakrishna Mission Vivekanada Educational and Research Institute, Narendrapur, Kolkata, 700103, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurpreet Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Darshan Singh Brar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.,ICAR-National Bureau of Plant Genetic Resources, PUSA, New Delhi, 110012, India
| |
Collapse
|
6
|
Panigrahi R, Kariali E, Panda BB, Lafarge T, Mohapatra PK. Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:507-523. [PMID: 30961785 DOI: 10.1071/fp18153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Binay Bhusan Panda
- Environmental Biotechnology Laboratory, Institute of Life Science, Bhubaneswar, 751023, India
| | - Tanguy Lafarge
- CIRAD, UMR AGAP, F-34398 Montpellier, France; and AGAP, University of Montpellier, CIRAD, INRA, INRIA, Montpellier SupAgro, Montpellier, France
| | - Pravat Kumar Mohapatra
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India; and Corresponding author. Emails:
| |
Collapse
|
7
|
Tang X, Gong R, Sun W, Zhang C, Yu S. Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:801-815. [PMID: 29218376 DOI: 10.1007/s00122-017-3036-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/01/2017] [Indexed: 05/17/2023]
Abstract
Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
Collapse
Affiliation(s)
- Xinxin Tang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rong Gong
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaopu Zhang
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Wuhan, 430070, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Yin C, Li H, Zhao Z, Wang Z, Liu S, Chen L, Liu X, Tian Y, Ma J, Xu L, Zhang D, Zhu S, Li D, Wan J, Wang J. Genetic dissection of top three leaf traits in rice using progenies from a japonica × indica cross. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:866-880. [PMID: 28875589 DOI: 10.1111/jipb.12597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The size of the top three leaves of rice plants is strongly associated with yield; thus, it is important to consider quantitative traits representing leaf size (e.g., length and width) when breeding novel rice varieties. It is challenging to measure such traits on a large scale in the field, and little is known about the genetic factors that determine the size of the top three leaves. In the present study, a population of recombinant inbred lines (RILs) and reciprocal single chromosomal segment substitution lines (SSSLs) derived from the progeny of a japonica Asominori × indica IR24 cross were grown under four diverse environmental conditions. Six morphological traits associated with leaf size were measured, namely length and flag leaf, length and flag, second and third leaves. In the RIL population, 49 QTLs were identified that clustered in 30 genomic region. Twenty-three of these QTLs were confirmed in the SSSL population. A comparison with previously reported genes/QTLs revealed eight novel genomic regions that contained uncharacterized ORFs associated with leaf size. The QTLs identified in this study can be used for marker-assisted breeding and for fine mapping of novel genetic elements controlling leaf size in rice.
Collapse
Affiliation(s)
- Changbin Yin
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiquan Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Shijia Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lidong Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Dashuang Zhang
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Susong Zhu
- Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Danting Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jianmin Wan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiankang Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Zhao Y, Tian X, Li Y, Zhang L, Guan P, Kou X, Wang X, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. Molecular and Functional Characterization of Wheat ARGOS Genes Influencing Plant Growth and Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:170. [PMID: 28228774 PMCID: PMC5296299 DOI: 10.3389/fpls.2017.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Auxin Regulated Gene involved in Organ Size (ARGOS) is significantly and positively associated with organ size and is involved in abiotic stress responses in plants. However, no studies on wheat ARGOS genes have been reported to date. In the present study, three TaARGOS homoeologous genes were isolated and located on chromosomes 4A, 4B, and 4D of bread wheat, all of which are highly conserved in wheat and its wild relatives. Comparisons of gene expression in different tissues demonstrated that the TaARGOSs were mainly expressed in the stem. Furthermore, the TaARGOS transcripts were significantly induced by drought, salinity, and various phytohormones. Transient expression of the TaARGOS-D protein in wheat protoplasts showed that TaARGOS-D localized to the endoplasmic reticulum. Moreover, overexpression of TaARGOS-D in Arabidopsis resulted in an enhanced germination rate, larger rosette diameter, increased rosette leaf area, and higher silique number than in wild-type (WT) plants. The roles of TaARGOS-D in the control of plant growth were further studied via RNA-seq, and it was found that 105 genes were differentially expressed; most of these genes were involved in 'developmental processes.' Interestingly, we also found that overexpression of TaARGOS-D in Arabidopsis improved drought and salinity tolerance and insensitivity to ABA relative to that in WT plants. Taken together, these results demonstrate that the TaARGOSs are involved in seed germination, seedling growth, and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| |
Collapse
|
10
|
Adriani DE, Dingkuhn M, Dardou A, Adam H, Luquet D, Lafarge T. Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent. RICE (NEW YORK, N.Y.) 2016; 9:28. [PMID: 27255512 PMCID: PMC4889964 DOI: 10.1186/s12284-016-0101-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 05/18/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Panicle architectural traits in rice (branching, rachis length, spikelet number) are established between panicle initiation and heading stages. They vary among genotypes and are prone to Genotype x Environment interactions. Together with panicle number, panicle architecture determines sink-based yield potential. Numerous studies analyzed genetic and environmental variation of plant morphology, but the plasticity of panicle structure is less well understood. This study addressed the response of rice panicle size and structure to limited light availability at plant level for near-isogenic lines (NILs) with IR64 or IRRI146 backgrounds, carrying the QTL qTSN4 (syn. SPIKE) for large panicles. Full light and shading in the greenhouse and two population densities in the field were implemented. The image analysis tool P-TRAP was used to analyze the architecture of detached panicles. RESULTS The qTSN4 increased total branch length, branching frequency and spikelet number per panicle in IRRI146 background in the field and greenhouse, and in IR64 background in the greenhouse, but not for IR64 in the field. In the field, however, qTSN4 reduced panicle number, neutralizing any potential yield gains from panicle size. Shading during panicle development reduced spikelet and branch number but qTSN4 mitigated partly this effect. Spikelet number over total branch length (spikelet density) was a stable allometry across genotypes and treatments with variation in spikelet number mainly due to the frequency of secondary branches. Spikelet number on the main tiller was correlated with stem growth rate during panicle development, indicating that effects on panicle size seemed related to resources available per tiller. CONCLUSIONS The qTSN4 effects on panicle spikelet number appear as indirect and induced by upstream effects on pre-floral assimilate resources at tiller level, as they were (1) prone to G x E interactions, (2) non-specific with respect to panicle architectural traits, and (3) associated with pre-floral stem growth rate.
Collapse
Affiliation(s)
- Dewi Erika Adriani
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- Faculty of Agriculture, University of Lambung Mangkurat, Banjarbaru, Indonesia
| | - Michael Dingkuhn
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- Crop and Environment Science Division (CESD), International Rice Research Institute (IRRI), Los Baños, Philippines
| | | | | | | | | |
Collapse
|