1
|
High Nitrate or Ammonium Applications Alleviated Photosynthetic Decline of Phoebe bournei Seedlings under Elevated Carbon Dioxide. FORESTS 2020. [DOI: 10.3390/f11030293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phoebe bournei is a precioustimber species and is listed as a national secondary protection plant in China. However, seedlings show obvious photosynthetic declinewhen grown long-term under an elevated CO2 concentration (eCO2). The global CO2 concentration is predicted to reach 700 μmol·mol−1 by the end of this century; however, little is known about what causes the photosynthetic decline of P. bournei seedlings under eCO2 or whether this photosynthetic decline could be controlled by fertilization measures. To explore this problem, one-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) concentration (350 ± 70 μmol·mol−1) or an eCO2 concentration (700 ± 10 μmol·mol−1) from June 12th to September 8th and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. Under eCO2, the net photosynthetic rate (Pn) of P. bournei seedlings treated with a moderate nitrate application was 27.0% lower than that of seedlings grown under an aCO2 concentration (p < 0.05), and photosynthetic declineappeared to be accompanied by a reduction of the electron transport rate (ETR), actual photochemical efficiency, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), rubisco activase (RCA) content, leaf thickness, and stomatal density. The Pn of seedlings treated with a high application of nitrate under eCO2 was 5.0% lower than that of seedlings grown under aCO2 (p > 0.05), and photosynthetic declineoccurred more slowly, accompanied by a significant increase in rubisco content, RCA content, and stomatal density. The Pn of P. bournei seedlings treated with either a moderate or a high application of ammonium and grown under eCO2 was not significantly differentto that of seedlings grown under aCO2—there was no photosynthetic decline—and the ETR, chlorophyll content, rubisco content, RCA content, and leaf thickness values were all increased. Increasing the application of nitrate or the supply of ammonium could slow down or prevent the photosynthetic declineof P. bournei seedlings under eCO2 by changing the leaf structure and photosynthetic physiological characteristics.
Collapse
|
2
|
Comparative Proteomic Analysis Unveils Critical Pathways Underlying the Role of Nitrogen Fertilizer Treatment in American Elderberry. Proteomes 2019; 7:proteomes7010010. [PMID: 30897755 PMCID: PMC6473435 DOI: 10.3390/proteomes7010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
American elderberry (Sambucus nigra subsp. canadensis) is a rapidly growing specialty crop in Missouri and eastern North America. Nitrogen (N) is a major nutrient involved in plant growth and development. However, proteome changes for different genotypes of elder in response to varying levels of N-treatment remain undefined. To reveal plant responses to N, comparative proteomic analyses were performed to determine consistent changes in three genotypes of elderberry leaves (Adams II, Bob Gordon and Wyldewood) grown under different N-fertilizer treatments. 165 proteins separated by two dimensional gel electrophoresis showed significant differences in abundance (p < 0.05 and greater than 2-fold). Principal component analysis of the abundance profiles of these proteins revealed Bob Gordon as a distinct genotype. The 165 proteins were identified by mass spectrometry and showed similar functional distributions in these genotypes underlying the N-treatment. Among the proteins identified, 23 are mainly involved in photosynthesis, protein metabolism and redox homeostasis. Their abundance profiles were not altered upon exposure to N or genotype. These results provide novel insights into plant responses to fertilizer treatment at the proteome level and could lead to a better understanding of molecular mechanisms of elderberry growth.
Collapse
|
3
|
Wu K, Li J, Luo J, Liu Y, Song Y, Liu N, Rafiq MT, Li T. Effects of elevated CO 2 and endophytic bacterium on photosynthetic characteristics and cadmium accumulation in Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:357-366. [PMID: 29940447 DOI: 10.1016/j.scitotenv.2018.06.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Elevated CO2 and use of endophytic microorganisms have been considered as efficient and novel ways to improve phytoextraction efficiency. However, the interactive effects of elevated CO2 and endophytes on hyperaccumulator is poorly understood. In this study, a hydroponics experiment was conducted to investigate the combined effect of elevated CO2 (eCO2) and inoculation with endophyte SaMR12 (ES) on the photosynthetic characteristics and cadmium (Cd) accumulation in hyperaccumulator Sedum alfredii. The results showed that eCO2 × ES interaction promoted the growth of S. alfredii, shoot and root biomass net increment were increased by 264.7 and 392.3%, respectively, as compared with plants grown in ambient CO2 (aCO2). The interaction of eCO2 and ES significantly (P < 0.05) increased chlorophyll content (53.2%), Pn (111.6%), Pnmax (59.8%), AQY (65.1%), and Lsp (28.8%), but reduced Gs, Tr, Rd, and Lcp. Increased photosynthetic efficiency was associated with higher activities of rubisco, Ca2+-ATPase, and Mg2+-ATPase, and linked with over-expression of two photosystem related genes (SaPsbS and SaLhcb2). PS II activities were significantly (P < 0.05) enhanced with Fv/Fm and Φ(II) increased by 12.3 and 13.0%, respectively, compared with plants grown in aCO2. In addition, the net uptake of Cd in the shoot and root tissue of S. alfredii grown in eCO2 × ES treatment was increased by 260.7 and 434.9%, respectively, due to increased expression of SaHMA2 and SaCAX2 Cd transporter genes. Our results suggest that eCO2 × ES can promote the growth of S. alfredii due to increased photosynthetic efficiency, and improve Cd accumulation and showed considerable potential of improving the phytoextraction ability of Cd by S. alfredii.
Collapse
Affiliation(s)
- Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Song
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanlin Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Tariq Rafiq
- Department of Environmental Science International Islamic University Islamabad, Pakistan
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Goel P, Sharma NK, Bhuria M, Sharma V, Chauhan R, Pathania S, Swarnkar MK, Chawla V, Acharya V, Shankar R, Singh AK. Transcriptome and Co-Expression Network Analyses Identify Key Genes Regulating Nitrogen Use Efficiency in Brassica juncea L. Sci Rep 2018; 8:7451. [PMID: 29748645 PMCID: PMC5945678 DOI: 10.1038/s41598-018-25826-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Nitrate is the main source of inorganic nitrogen for plants, which also act as signaling molecule. Present study was aimed to understand nitrate regulatory mechanism in Brassica juncea cultivars, with contrasting nitrogen-use-efficiency (NUE) viz. Pusa Bold (PB, high-NUE) and Pusa Jai Kisan (PJK, low-NUE), employing RNA-seq approach. A total of 4031, 3874 and 3667 genes in PB and 2982, 2481 and 2843 genes in PJK were differentially expressed in response to early, low (0.25 mM KNO3), medium (2 mM KNO3) and high (4 mM KNO3) nitrate treatments, respectively, as compared to control (0 mM KNO3). Genes of N-uptake (NRT1.1, NRT1.8, and NRT2.1), assimilation (NR1, NR2, NiR, GS1.3, and Fd-GOGAT) and remobilization (GDH2, ASN2–3 and ALaT) were highly-upregulated in PB than in PJK in response to early nitrate treatments. We have also identified transcription factors and protein kinases that were rapidly induced in response to nitrate, suggesting their involvement in nitrate-mediated signaling. Co-expression network analysis revealed four nitrate specific modules in PB, enriched with GO terms like, “Phenylpropanoid pathway”, “Nitrogen compound metabolic process” and “Carbohydrate metabolism”. The network analysis also identified HUB transcription factors like mTERF, FHA, Orphan, bZip and FAR1, which may be the key regulators of nitrate-mediated response in B. juncea.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Nitesh Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Monika Bhuria
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Vishal Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Rohit Chauhan
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India
| | - Shivalika Pathania
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India
| | - Mohit Kumar Swarnkar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India
| | - Vandna Chawla
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India
| | - Vishal Acharya
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India
| | - Ravi Shankar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, (HP), India. .,Academy of Scientific and Innovative Research, New Delhi, India. .,ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi, 834010, India.
| |
Collapse
|
5
|
Meise P, Jozefowicz AM, Uptmoor R, Mock HP, Ordon F, Schum A. Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. J Proteomics 2017; 166:68-82. [PMID: 28733104 DOI: 10.1016/j.jprot.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
Aiming at a better understanding of the physiological and biochemical background of nitrogen use efficiency, alterations in the shoot proteome under N-deficiency were investigated in two contrasting potato genotypes grown in vitro with 60 and 7.5mM N, respectively. A gel based proteomic approach was applied to identify candidate proteins associated with genotype specific responses to N-deficiency. 21% of the detected proteins differed in abundance between the two genotypes. Between control and N-deficiency conditions 19.5% were differentially accumulated in the sensitive and 15% in the tolerant genotype. 93% of the highly N-deficiency responsive proteins were identified by MALDI TOF/TOF mass spectrometry. The major part was associated with photosynthesis, carbohydrate metabolism, stress response and regulation. Differential accumulation of enzymes involved in the Calvin cycle and glycolysis suggest activation of alternative carbohydrate pathways. In the tolerant genotype, increased abundance under N-deficiency was also found for enzymes involved in chlorophyll synthesis and stability of enzymes, which increase photosynthetic carbon fixation efficiency. Out of a total of 106 differentially abundant proteins, only eight were detected in both genotypes. Our findings suggest that mutually responsive proteins reflect universal stress responses while adaptation to N-deficiency in metabolic pathways is more genotype specific. SIGNIFICANCE Nitrogen losses from arable farm land considerably contribute to environmental pollution. In potato, this is a special problem due cultivation on light soils, irrigation and the shallow root system. Therefore, breeding of cultivars with improved nitrogen use efficiency and stable yields under reduced N fertilization is an important issue. Knowledge of genotype dependent adaptation to N-deficiency at the proteome level can help to understand regulation of N efficiency and development of N-efficient cultivars.
Collapse
Affiliation(s)
- Philipp Meise
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Ralf Uptmoor
- University of Rostock, Faculty of Agricultural and Environmental Science, Justus-von-Liebig-Weg 6, 18055 Rostock, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Applied Biochemistry, OT Gatersleben, Corrensstraße 3, 06466 Stadt Seeland, Germany
| | - Frank Ordon
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany
| | - Annegret Schum
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, OT Groß Lüsewitz, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany.
| |
Collapse
|