1
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
2
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
3
|
A chromosome-level genome assembly of Plantago ovata. Sci Rep 2023; 13:1528. [PMID: 36707685 PMCID: PMC9883528 DOI: 10.1038/s41598-022-25078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/24/2022] [Indexed: 01/29/2023] Open
Abstract
Plantago ovata is cultivated for production of its seed husk (psyllium). When wet, the husk transforms into a mucilage with properties suitable for pharmaceutical industries, utilised in supplements for controlling blood cholesterol levels, and food industries for making gluten-free products. There has been limited success in improving husk quantity and quality through breeding approaches, partly due to the lack of a reference genome. Here we constructed the first chromosome-scale reference assembly of P. ovata using a combination of 5.98 million PacBio and 636.5 million Hi-C reads. We also used corrected PacBio reads to estimate genome size and transcripts to generate gene models. The final assembly covers ~ 500 Mb with 99.3% gene set completeness. A total of 97% of the sequences are anchored to four chromosomes with an N50 of ~ 128.87 Mb. The P. ovata genome contains 61.90% repeats, where 40.04% are long terminal repeats. We identified 41,820 protein-coding genes, 411 non-coding RNAs, 108 ribosomal RNAs, and 1295 transfer RNAs. This genome will provide a resource for plant breeding programs to, for example, reduce agronomic constraints such as seed shattering, increase psyllium yield and quality, and overcome crop disease susceptibility.
Collapse
|
4
|
Rozière J, Guichard C, Brunaud V, Martin ML, Coursol S. A comprehensive map of preferentially located motifs reveals distinct proximal cis-regulatory sequences in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:976371. [PMID: 36311095 PMCID: PMC9597372 DOI: 10.3389/fpls.2022.976371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Identification of cis-regulatory sequences controlling gene expression is an arduous challenge that is being actively explored to discover key genetic factors responsible for traits of agronomic interest. Here, we used a genome-wide de novo approach to investigate preferentially located motifs (PLMs) in the proximal cis-regulatory landscape of Arabidopsis thaliana and Zea mays. We report three groups of PLMs in both the 5'- and 3'-gene-proximal regions and emphasize conserved PLMs in both species, particularly in the 3'-gene-proximal region. Comparison with resources from transcription factor and microRNA binding sites shows that 79% of the identified PLMs are unassigned, although some are supported by MNase-defined cistrome occupancy analysis. Enrichment analyses further reveal that unassigned PLMs provide functional predictions that differ from those derived from transcription factor and microRNA binding sites. Our study provides a comprehensive map of PLMs and demonstrates their potential utility for future characterization of orphan genes in plants.
Collapse
Affiliation(s)
- Julien Rozière
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Cécile Guichard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Marie-Laure Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA-Paris-Saclay, Palaiseau, France
| | - Sylvie Coursol
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
5
|
Molecular characterization, evolutionary and phylogenetic analyses of rice ACT/BAT-type amino acid transporters. Comput Biol Chem 2022; 100:107745. [DOI: 10.1016/j.compbiolchem.2022.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
|
6
|
Wang Z, Cai Q, Wang Y, Li M, Wang C, Wang Z, Jiao C, Xu C, Wang H, Zhang Z. Comparative Analysis of Codon Bias in the Chloroplast Genomes of Theaceae Species. Front Genet 2022; 13:824610. [PMID: 35360853 PMCID: PMC8961065 DOI: 10.3389/fgene.2022.824610] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Theaceae species are dicotyledonous angiosperms with extremely high ornamental and economic value. The chloroplast genome is traditionally used to study species evolution, expression of chloroplast genes and chloroplast transformation. Codon usage bias (CUB) analysis is beneficial for investigations of evolutionary relationships and can be used to improve gene expression efficiency in genetic transformation research. However, there are relatively few systematic studies of the CUB in the chloroplast genomes of Theaceae species. In this study, CUB and nucleotide compositions parameters were determined by the scripts written in the Perl language, CodonW 1.4.2, CU.Win2000, RStudio and SPSS 23.0. The chloroplast genome data of 40 Theaceae species were obtained to analyse the codon usage (CU) characteristics of the coding regions and the influence of the source of variation on CUB. To explore the relationship between the CUB and gene expression levels in these 40 Theaceae plastomes, the synonymous codon usage order (SCUO) and measure independent of length and composition (MILC) values were determined. Finally, phylogenetic analysis revealed the genetic evolutionary relationships among these Theaceae species. Our results showed that based on the chloroplast genomes of these 40 Theaceae species, the CUB was for codons containing A/T bases and those that ended with A/T bases. Moreover, there was great commonality in the CUB of the Theaceae species according to comparative analysis of relative synonymous codon usage (RSCU) and relative frequency of synonymous codon (RFSC): these species had 29 identical codons with bias (RSCU > 1), and there were 19 identical high-frequency codons. The CUB of Theaceae species is mainly affected by natural selection. The SCUO value of the 40 Theaceae species was 0.23 or 0.24, and the chloroplast gene expression level was moderate, according to MILC values. Additionally, we observed a positive correlation between the SCUO and MILC values, which indicated that CUB might affect gene expression. Furthermore, the phylogenetic analysis showed that the evolutionary relationships in these 40 Theaceae species were relatively conserved. A systematic study on the CUB and expression of Theaceae species provides further evidence for their evolution and phylogeny.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Yue Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Minhui Li
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Congcong Xu
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Hongyan Wang
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Zhaoliang Zhang,
| |
Collapse
|
7
|
Yang T, Sahu SK, Yang L, Liu Y, Mu W, Liu X, Strube ML, Liu H, Zhong B. Comparative Analyses of 3,654 Plastid Genomes Unravel Insights Into Evolutionary Dynamics and Phylogenetic Discordance of Green Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:808156. [PMID: 35498716 PMCID: PMC9038950 DOI: 10.3389/fpls.2022.808156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The plastid organelle is essential for many vital cellular processes and the growth and development of plants. The availability of a large number of complete plastid genomes could be effectively utilized to understand the evolution of the plastid genomes and phylogenetic relationships among plants. We comprehensively analyzed the plastid genomes of Viridiplantae comprising 3,654 taxa from 298 families and 111 orders and compared the genomic organizations in their plastid genomic DNA among major clades, which include gene gain/loss, gene copy number, GC content, and gene blocks. We discovered that some important genes that exhibit similar functions likely formed gene blocks, such as the psb family presumably showing co-occurrence and forming gene blocks in Viridiplantae. The inverted repeats (IRs) in plastid genomes have doubled in size across land plants, and their GC content is substantially higher than non-IR genes. By employing three different data sets [all nucleotide positions (nt123), only the first and second codon positions (nt12), and amino acids (AA)], our phylogenomic analyses revealed Chlorokybales + Mesostigmatales as the earliest-branching lineage of streptophytes. Hornworts, mosses, and liverworts forming a monophylum were identified as the sister lineage of tracheophytes. Based on nt12 and AA data sets, monocots, Chloranthales and magnoliids are successive sister lineages to the eudicots + Ceratophyllales clade. The comprehensive taxon sampling and analysis of different data sets from plastid genomes recovered well-supported relationships of green plants, thereby contributing to resolving some long-standing uncertainties in the plant phylogeny.
Collapse
Affiliation(s)
- Ting Yang
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sunil Kumar Sahu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- *Correspondence: Sunil Kumar Sahu,
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Weixue Mu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Xin Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huan Liu
- Beijing Genomics Institute Shenzhen, Yantian Beishan Industrial Zone, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Bojian Zhong,
| |
Collapse
|
8
|
Yin J, Wu M, Lin R, Li X, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Dong WG, Dong Y, Guo XG, Shao R. Frequent tRNA gene translocation towards the boundaries with control regions contributes to the highly dynamic mitochondrial genome organization of the parasitic lice of mammals. BMC Genomics 2021; 22:598. [PMID: 34362306 PMCID: PMC8344215 DOI: 10.1186/s12864-021-07859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Background The typical single-chromosome mitochondrial (mt) genome of animals has fragmented into multiple minichromosomes in the lineage Mitodivisia, which contains most of the parasitic lice of eutherian mammals. These parasitic lice differ from each other even among congeneric species in mt karyotype, i.e. the number of minichromosomes, and the gene content and gene order in each minichromosome, which is in stark contrast to the extremely conserved single-chromosome mt genomes across most animal lineages. How fragmented mt genomes evolved is still poorly understood. We use Polyplax sucking lice as a model to investigate how tRNA gene translocation shapes the dynamic mt karyotypes. Results We sequenced the full mt genome of the Asian grey shrew louse, Polyplax reclinata. We then inferred the ancestral mt karyotype for Polyplax lice and compared it with the mt karyotypes of the three Polyplax species sequenced to date. We found that tRNA genes were entirely responsible for mt karyotype variation among these three species of Polyplax lice. Furthermore, tRNA gene translocation observed in Polyplax lice was only between different types of minichromosomes and towards the boundaries with the control region. A similar pattern of tRNA gene translocation can also been seen in other sucking lice with fragmented mt genomes. Conclusions We conclude that inter-minichromosomal tRNA gene translocation orientated towards the boundaries with the control region is a major contributing factor to the highly dynamic mitochondrial genome organization in the parasitic lice of mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07859-w.
Collapse
Affiliation(s)
- Wen-Ge Dong
- Institute of Pathogens and Vectors, Key Laboratory for Preventing and Controlling Plague in Yunnan Province, Dali University, 671000, Dali, China.
| | - Yalun Dong
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Xian-Guo Guo
- Institute of Pathogens and Vectors, Key Laboratory for Preventing and Controlling Plague in Yunnan Province, Dali University, 671000, Dali, China
| | - Renfu Shao
- GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia. .,School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| |
Collapse
|
10
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
11
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
12
|
Aguilar M, Prieto P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. THE PLANT GENOME 2020; 13:e20065. [PMID: 33029942 DOI: 10.1002/tpg2.20065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Bread wheat, Triticum aestivum L., is one of the most important crops in the world. Understanding its genome organization (allohexaploid; AABBDD; 2n = 6x = 42) is essential for geneticists and plant breeders. Particularly, the knowledge of how homologous chromosomes (equivalent chromosomes from the same genome) specifically recognize each other to pair at the beginning of meiosis, the cellular process to generate gametes in sexually reproducing organisms, is fundamental for plant breeding and has a big influence on the fertility of wheat plants. Initial homologous chromosome interactions contribute to specific recognition and pairing between homologues at the onset of meiosis. Understanding the molecular basis of these critical processes can help to develop genetic tools in a breeding context to promote interspecific chromosome associations in hybrids or interspecific genetic crosses to facilitate the transfer of desirable agronomic traits from related species into a crop like wheat. The terminal regions of chromosomes, which include telomeres and subtelomeres, participate in chromosome recognition and pairing. We present a detailed molecular analysis of subtelomeres of wheat chromosome arms 1AS, 4AS, 7AS, 7BS and 7DS. Results showed a high polymorphism in the subtelomeric region among homoeologues (equivalent chromosomes from related genomes) for all the features analyzed, including genes, transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots and targeted sequence motifs for relevant DNA-binding proteins. These polymorphisms might be the molecular basis for the specificity of homologous recognition and pairing in initial chromosome interactions at the beginning of meiosis in wheat.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3a planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, Córdoba, 14080, Spain
| |
Collapse
|
13
|
Yang ZK, Luo H, Zhang Y, Wang B, Gao F. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways. Bioinformatics 2018; 34:3421-3426. [PMID: 29726921 DOI: 10.1093/bioinformatics/bty376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S.cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. Results By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational double strand breaks (DSBs)-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders. By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yanming Zhang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Baijing Wang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
14
|
Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J. Codon usage and codon pair patterns in non-grass monocot genomes. ANNALS OF BOTANY 2017; 120:893-909. [PMID: 29155926 PMCID: PMC5710610 DOI: 10.1093/aob/mcx112] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots. METHODS First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces. KEY RESULTS The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots. CONCLUSION Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - RofinaYasmin Binti Othman
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - N Ramakrishnan
- Electrical and Computer System Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- For correspondence. E-mail:
| |
Collapse
|