1
|
Yin Y, Zhang L, Zhang J, Zhong Y, Wang L. MdFC2, a ferrochelatase gene, is a positive regulator of ALA-induced anthocyanin accumulation in apples. JOURNAL OF PLANT PHYSIOLOGY 2024; 304:154381. [PMID: 39612779 DOI: 10.1016/j.jplph.2024.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
5-Aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrrole compounds, significantly induces anthocyanin accumulation in apple (Malus × domestica Borkh.) as well as other fruits. Although the molecular mechanisms of ALA-induced anthocyanin accumulation have been reported, it remains unknown whether the metabolism of ALA is involved in ALA-induced anthocyanin accumulation. Here, we found that MdFC2, a gene encoding ferrochelatase (MdFC2), which catalyzes the generation of heme from protoporphyrin lX (PPIX), may play an important role in ALA-induced apple anthocyanin accumulation. Exogenous ALA induced the MdFC2 expression as well as anthocyanin accumulation in apple leaves, calli, and isolated fruits. MdFC2 overexpression in apple leaves or calli significantly enhanced anthocyanin accumulation as well as the expression of genes involved in anthocyanin biosynthesis, while RNA interference MdFC2 inhibited anthocyanin accumulation and the expression of genes involved in anthocyanin biosynthesis. When 2,2'-dithiodipyridine, an inhibitor of MdFC2, was added, ALA-induced anthocyanin accumulation was blocked. These results suggest that ALA-induced anthocyanin accumulation of apple may be regulated by heme or its biosynthesis, among which MdFC2 or MdFC2 may play a critical positive regulatory role. This finding provides a novel insight to explore the mechanisms of ALA-regulating physiological processes and better application of ALA in high-quality fruit production.
Collapse
Affiliation(s)
- Yifan Yin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Wang J, He Y, Wang G, Li R, Niu Y, Liu K, Zhang J, Tang Z, Lyu J, Xie J, Wu Y, Yu J. Exogenous 5-aminolevulinic acid promotes carotenoid accumulation in tomato fruits by regulating ethylene biosynthesis and signaling. PHYSIOLOGIA PLANTARUM 2024; 176:e14648. [PMID: 39639852 DOI: 10.1111/ppl.14648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
5-Aminolevulinic acid (ALA) can not only improve fruit yield and quality, but also increase the lycopene content in tomato fruits. Furthermore, ALA has been shown to promote system-2 ethylene production in tomato fruits. However, the specific interactions between ALA and ethylene during fruit ripening remain unclear. In this study, we treated tomato fruits with ALA, 1-aminocyclopropane-1-carboxylic acid (ACC), aminooxyacetic acid (AOA) + AgNO3, and AOA + AgNO3 + ALA and analyzed ethylene emissions, carotenoid contents, and the relative gene expression levels related to fruit ripening, carotenoid contents, ethylene synthesis, and signal transduction. The ALA treatment significantly enhanced ethylene bursts and carotenoid accumulation, and significantly upregulated the expression of ethylene and carotenoid-related genes, such as SlACS2, SlACS4, SlACO1, SlPSY1, and SlPDS. We also observed that the gene expression levels associated with carotenoid synthesis were downregulated in fruits treated with a combination of ethylene inhibitors (AOA + AgNO3). However, there was a significant upregulation in the gene expression levels associated with carotenoid synthesis and an increase in carotenoid content when fruits were treated with AOA + AgNO3 + ALA. After silencing SlACO1 expression, the total carotenoid content and SlPSY1 expression decreased significantly, while this effect was reversed after exogenous application of ALA. These results indicated that ALA promotes carotenoid accumulation in tomato fruits by promoting ethylene biosynthesis. In conclusion, our results highlighted the role of ALA in promoting carotenoid accumulation and ripening in tomato fruits by regulating ethylene synthesis, thereby providing a novel strategy for improving fruit quality.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
An JP, Zhao L, Cao YP, Ai D, Li MY, You CX, Han Y. The SMXL8-AGL9 module mediates crosstalk between strigolactone and gibberellin to regulate strigolactone-induced anthocyanin biosynthesis in apple. THE PLANT CELL 2024; 36:4404-4425. [PMID: 38917246 PMCID: PMC11448916 DOI: 10.1093/plcell/koae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL-response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yun-Peng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Di Ai
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Miao-Yi Li
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018 Shandong, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| |
Collapse
|
4
|
Wu L, Xiong S, Shi X, Wang Y. AP3 promotes the synthesis of condensed tannin in fruit by positively regulating ANR expression. Int J Biol Macromol 2024; 261:129558. [PMID: 38242406 DOI: 10.1016/j.ijbiomac.2024.129558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Condensed tannins are often found in fruits and nuts and have an astringent flavor. The synthesis pathway of condensed tannins is already clear, but few related regulatory factors have been explored. Previous studies about MADS-box transcription factors have mainly focused on the regulation of floral organ development. Recent studies have shown that MADS-box are also involved in fruit development, maturation, and quality. The fruit of Quercus fabri is rich in starch and nutrients in its kernel but is difficult to eat directly because of its high condensed tannin content. This study identified and functionally characterized the MADS-box transcription factor QfAP3 in Q. fabri. Functional analysis based on overexpression in Micro-Tom showed that QfAP3 promoted condensed tannin synthesis. By analyzing the expression trend of key genes in the condensed tannin synthesis pathway in Micro-Tom plants, we found that the expression trend of ANR was consistent with that of QfAP3, and QfAP3 could bind to the promoter of ANR and positively regulate it. This study has discovered new functions of MADS-box transcription factors in fruit quality formation, developed new regulatory factors for the synthesis pathway of condensed tannin, and provided a biotechnological method that can effectively reduce astringency in fruit.
Collapse
Affiliation(s)
- Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Shifa Xiong
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Xiang Shi
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China.
| |
Collapse
|
5
|
Wang C, Meng L, Zhang G, Yang X, Pang B, Cheng J, He B, Sun F. Unraveling crop enzymatic browning through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 15:1342639. [PMID: 38371411 PMCID: PMC10869537 DOI: 10.3389/fpls.2024.1342639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Enzymatic browning reactions, triggered by oxidative stress, significantly compromise the quality of harvested crops during postharvest handling. This has profound implications for the agricultural industry. Recent advances have employed a systematic, multi-omics approach to developing anti-browning treatments, thereby enhancing our understanding of the resistance mechanisms in harvested crops. This review illuminates the current multi-omics strategies, including transcriptomic, proteomic, and metabolomic methods, to elucidate the molecular mechanisms underlying browning. These strategies are pivotal for identifying potential metabolic markers or pathways that could mitigate browning in postharvest systems.
Collapse
Affiliation(s)
- Chunkai Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Lin Meng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Guochao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Xiujun Yang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| | - Bingwen Pang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Cheng
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing He
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fushan Sun
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, China
| |
Collapse
|
6
|
Jiang H, Qi CH, Gao HN, Feng ZQ, Wu YT, Xu XX, Cui JY, Wang XF, Lv YH, Gao WS, Jiang YM, You CX, Li YY. MdBT2 regulates nitrogen-mediated cuticular wax biosynthesis via a MdMYB106-MdCER2L1 signalling pathway in apple. NATURE PLANTS 2024; 10:131-144. [PMID: 38172573 DOI: 10.1038/s41477-023-01587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Cuticular waxes play important roles in plant development and the interaction between plants and their environment. Researches on wax biosynthetic pathways have been reported in several plant species. Also, wax formation is closely related to environmental condition. However, the regulatory mechanism between wax and environmental factors, especially essential mineral elements, is less studied. Here we found that nitrogen (N) played a negative role in the regulation of wax synthesis in apple. We therefore analysed wax content, composition and crystals in BTB-TAZ domain protein 2 (MdBT2) overexpressing and antisense transgenic apple seedlings and found that MdBT2 could downregulate wax biosynthesis. Furthermore, R2R3-MYB transcription factor 16-like protein (MdMYB106) interacted with MdBT2, and MdBT2 mediated its ubiquitination and degradation through the 26S proteasome pathway. Finally, HXXXD-type acyl-transferase ECERIFERUM 2-like1 (MdCER2L1) was confirmed as a downstream target gene of MdMYB106. Our findings reveal an N-mediated apple wax biosynthesis pathway and lay a foundation for further study of the environmental factors associated with wax regulatory networks in apple.
Collapse
Affiliation(s)
- Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chen-Hui Qi
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Ting Wu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin-Xiang Xu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jian-Ying Cui
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yan-Hui Lv
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wen-Sheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Xiang You
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
7
|
Fang X, Zhang L, Shangguan L, Wang L. MdMYB110a, directly and indirectly, activates the structural genes for the ALA-induced accumulation of anthocyanin in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111511. [PMID: 36377142 DOI: 10.1016/j.plantsci.2022.111511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
5-Aminolevulinic acid (ALA), an essential biosynthetic precursor of tetrapyrrole compounds, promotes the anthocyanin accumulation in many plant species. However, the underlying mechanism of ALA-induced accumulation is not yet fully understood. In this study, we identified an important regulator of the anthocyanin accumulation, MdMYB110a, which plays an important role in the ALA-induced anthocyanin accumulation. MdMYB110a activated the expression of MdGSTF12 by binding to its promoter. Additionally, two interacting MdMYB110a proteins, MdWD40-280 and MdHsfB3a, were isolated and confirmed as positive regulators of the ALA-induced anthocyanin accumulation. Both MdWD40-280 and MdHsfB3a enhanced the ability of MdMYB110a to transcribe MdGSTF12. A yeast one-hybrid assay revealed that MdWD40-280 did not bind to most structural genes in the anthocyanin biosynthetic and transport pathways, thus promoting anthocyanin accumulation by MdWD40-280 to depend on MdMYB110a. However, MdHsfB3a could bind to both the MdDFR and MdANS promoters, thereby directly regulating anthocyanin biosynthesis. Collectively, these results provide new insight into the mechanism of ALA-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wang J, Yuan H, Wu Y, Yu J, Ali B, Zhang J, Tang Z, Xie J, Lyu J, Liao W. Application of 5-aminolevulinic acid promotes ripening and accumulation of primary and secondary metabolites in postharvest tomato fruit. Front Nutr 2022; 9:1036843. [PMID: 36438749 PMCID: PMC9686309 DOI: 10.3389/fnut.2022.1036843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L-1 ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out. The results showed that ALA significantly promoted carotenoids accumulation by upregulating the gene expression levels of geranylgeranyl diphosphate synthase (GGPPS, encoding geranylgeranyl diphosphate synthase), phytoene synthase 1 (PSY1, encoding phytoene synthase), phytoene desaturase (PDS, encoding phytoene desaturase), and lycopeneβ-cyclase (LCYB, encoding lycopene β-cyclase), whereas chlorophyll content decreased by downregulating the expression levels of Mg-chelatase (CHLH, encoding Mg-chelatase) and protochlorophyllide oxidoreductase (POR, encoding protochlorophyllide oxidoreductase). Besides, the contents of soluble solids, vitamin C, soluble protein, free amino acids, total soluble sugar, organic acid, total phenol, and flavonoid were increased in ALA-treated tomato fruit, but the fruit firmness was decreased. These results indicated that the exogenous ALA could not only promote postharvest tomato fruit ripening but also improve the internal nutritional and flavor quality of tomato fruit.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hong Yuan
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
10
|
Sun X, Li X, Wang Y, Xu J, Jiang S, Zhang Y. MdMKK9-Mediated the Regulation of Anthocyanin Synthesis in Red-Fleshed Apple in Response to Different Nitrogen Signals. Int J Mol Sci 2022; 23:ijms23147755. [PMID: 35887103 PMCID: PMC9324793 DOI: 10.3390/ijms23147755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is a widely existing signal transduction system in eukaryotes, and plays an important role in the signal transduction processes of plant cells in response to environmental stress. In this study, we screened MdMKK9, a gene in the MAPK family. This gene is directly related to changes in anthocyanin synthesis in the ‘Daihong’ variety of red-fleshed apple (Malus sieversii f neidzwetzkyana (Dieck) Langenf). MdMKK9 expression was up-regulated in ‘Daihong’ tissue culture seedlings cultured at low levels of nitrogen. This change in gene expression up-regulated the expression of genes related to anthocyanin synthesis and nitrogen transport, thus promoting anthocyanin synthesis and causing the tissue culture seedlings to appear red in color. To elucidate the function of MdMKK9, we used the CRISPR/Cas9 system to construct a gene editing vector for MdMKK9 and successfully introduced it into the calli of the ‘Orin’ apple. The MdMKK9 deletion mutants (MUT) calli could not respond to the low level of nitrogen signal, the expression level of anthocyanin synthesis-related genes was down-regulated, and the anthocyanin content was lower than that of the wild type (WT). In contrast, the MdMKK9-overexpressed calli up-regulated the expression level of anthocyanin synthesis-related genes and increased anthocyanin content, and appeared red in conditions of low level of nitrogen or nitrogen deficiency. These results show that MdMKK9 plays a role in the adaptation of red-fleshed apple to low levels of nitrogen by regulating the nitrogen status and anthocyanin accumulation.
Collapse
Affiliation(s)
- Xiaohong Sun
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
| | - Jihua Xu
- Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (X.L.); (Y.W.)
- Correspondence: (S.J.); (Y.Z.)
| |
Collapse
|
11
|
Afzaal M, Saeed F, Hussain M, Shahid F, Siddeeg A, Al‐Farga A. Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Sci Nutr 2022; 10:2333-2346. [PMID: 35844910 PMCID: PMC9281926 DOI: 10.1002/fsn3.2842] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 12/18/2022] Open
Abstract
Adulteration and mislabeling have become a very common global malpractice in food industry. Especially foods of animal origin are prepared from plant sources and intentionally mislabeled. This type of mislabeling is an important concern in food safety as the replaced ingredients may cause a food allergy or toxicity to vulnerable consumers. Moreover, foodborne pathogens also pose a major threat to food safety. There is a dire need to develop strong analytical tools to deal with related issues. In this context, proteomics stands out as a promising tool used to report the aforementioned issues. The development in the field of omics has inimitable advantages in enabling the understanding of various biological fields especially in the discipline of food science. In this review, current applications and the role of proteomics in food authenticity, safety, and quality and food traceability are highlighted comprehensively. Additionally, the other components of proteomics have also been comprehensively described. Furthermore, this review will be helpful in the provision of new intuition into the use of proteomics in food analysis. Moreover, the pathogens in food can also be identified based on differences in their protein profiling. Conclusively, proteomics, an indicator of food properties, its origin, the processes applied to food, and its composition are also the limelight of this article.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farheen Shahid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| |
Collapse
|
12
|
Zhang X, Li B, Duan R, Han C, Wang L, Yang J, Wang L, Wang S, Su Y, Xue H. Transcriptome Analysis Reveals Roles of Sucrose in Anthocyanin Accumulation in 'Kuerle Xiangli' ( Pyrus sinkiangensis Yü). Genes (Basel) 2022; 13:genes13061064. [PMID: 35741826 PMCID: PMC9222499 DOI: 10.3390/genes13061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Pear (Pyrus L.) is one of the most important temperate fruit crops worldwide, with considerable economic value and significant health benefits. Red-skinned pears have an attractive appearance and relatively high anthocyanin accumulation, and are especially favored by customers. Abnormal weather conditions usually reduce the coloration of red pears. The application of exogenous sucrose obviously promotes anthocyanins accumulation in ‘Kuerle Xiangli’ (Pyrus sinkiangensis Yü); however, the underlying molecular mechanism of sucrose-mediated fruit coloration remains largely unknown. In this study, comprehensive transcriptome analysis was performed to identify the essential regulators and pathways associated with anthocyanin accumulation. The differentially expressed genes enriched in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes items were analyzed. The transcript levels of some anthocyanin biosynthetic regulatory genes and structural genes were significantly induced by sucrose treatment. Sucrose application also stimulated the expression of some sugar transporter genes. Further RT-qPCR analysis confirmed the induction of anthocyanin biosynthetic genes. Taken together, the results revealed that sucrose promotes pear coloration most likely by regulating sugar metabolism and anthocyanin biosynthesis, and this study provides a comprehensive understanding of the complex molecular mechanisms underlying the coloration of red-skinned pear.
Collapse
Affiliation(s)
- Xiangzhan Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Bo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ruiwei Duan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chunhong Han
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huabai Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Correspondence:
| |
Collapse
|
13
|
Fang X, Zhang L, Wang L. The Transcription Factor MdERF78 Is Involved in ALA-Induced Anthocyanin Accumulation in Apples. FRONTIERS IN PLANT SCIENCE 2022; 13:915197. [PMID: 35720608 PMCID: PMC9201628 DOI: 10.3389/fpls.2022.915197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 05/30/2023]
Abstract
As a friendly plant growth regulator to the environment, 5-aminolevulinic acid (ALA) has been widely used in plant production, such as fruit coloration, stress resistance, and so on. Previous studies have identified some genes that have a function in the anthocyanin accumulation induced by ALA. However, the regulatory mechanism has not been well revealed. In the current study, we proposed that an ALA-responsive transcription factor, MdERF78, regulated anthocyanin accumulation. MdERF78, overexpressed in apple peels or calli, resulted in a significant increase of anthocyanins, while MdERF78 interference had an opposite trend. Furthermore, the anthocyanin accumulation induced by MdERF78 overexpression was enhanced by exogenous ALA treatment, suggesting that MdERF78 was involved in the ALA-induced anthocyanin accumulation. Yeast one-hybrid and dual luciferase reporter assays revealed that MdERF78 bound to the promoters of MdF3H and MdANS directly and activated their expressions. Additionally, MdERF78 interacted with MdMYB1 and enhanced the transcriptional activity of MdMYB1 to its target gene promoters. Based on these, it can be concluded that MdERF78 has a positive function in ALA-induced anthocyanin accumulation via the MdERF78-MdF3Hpro/MdANSpro and MdERF78-MdMYB1-MdDFRpro/MdUFGTpro/MdGSTF12pro regulatory network. These findings provide new insights into the regulatory mechanism of ALA-promoted anthocyanin accumulation.
Collapse
Affiliation(s)
| | | | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. HORTICULTURE RESEARCH 2022; 9:uhac071. [PMID: 35734379 PMCID: PMC9209810 DOI: 10.1093/hr/uhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.
Collapse
Affiliation(s)
- Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yiliu Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yumeng Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hao Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Zhang H, Tao H, Yang H, Zhang L, Feng G, An Y, Wang L. MdSCL8 as a Negative Regulator Participates in ALA-Induced FLS1 to Promote Flavonol Accumulation in Apples. Int J Mol Sci 2022; 23:ijms23042033. [PMID: 35216148 PMCID: PMC8875840 DOI: 10.3390/ijms23042033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Apples (Malus domestica) are rich in flavonols, and 5-aminolevulinic acid (ALA) plays an important role in the regulation of plant flavonoid metabolism. To date, the underlying mechanism of ALA promoting flavonol accumulation is unclear. Flavonol synthase (FLS) is a key enzyme in flavonol biosynthesis. In this study, we found that ALA could enhance the promoter activity of MdFLS1 in the ‘Fuji’ apple and improve its expression. With MdFLS1 as bait, we screened a novel transcription factor MdSCL8 by the Yeast One-Hybrid (Y1H) system from the apple cDNA library which we previously constructed. Using luciferase reporter assay and transient GUS activity assay, we verified that MdSCL8 inhibits the activity of MdFLS1 promoter and hinders MdFLS1 expression, thus reducing flavonol accumulation in apple. ALA significantly inhibited MdSCL8 expression. Therefore, ALA promoted the expression of MdFLS1 and the consequent flavonol accumulation probably by down-regulating MdSCL8. We also found that ALA significantly enhanced the gene expression of MdMYB22 and MdHY5, two positive regulators of MdFLS. We further demonstrated that MdMYB22 interacts with MdHY5, but neither of them interacts with MdSCL8. Taken together, our data suggest MdSCL8 as a novel regulator of MdFLS1 and provide important insights into mechanisms of ALA-induced flavonol accumulation in apples.
Collapse
|
16
|
Ma Y, Ma X, Gao X, Wu W, Zhou B. Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int J Mol Sci 2021; 22:ijms222011116. [PMID: 34681776 PMCID: PMC8538450 DOI: 10.3390/ijms222011116] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are natural pigments with antioxidant effects that exist in various fruits and vegetables. The accumulation of anthocyanins is induced by environmental signals and regulated by transcription factors in plants. Numerous evidence has indicated that among the environmental factors, light is one of the most signal regulatory factors involved in the anthocyanin biosynthesis pathway. However, the signal transduction of light and molecular regulation of anthocyanin synthesis remains to be explored. Here, we focus on the research progress of signal transduction factors for positive and negative regulation in light-dependent and light-independent anthocyanin biosynthesis. In particular, we will discuss light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis in plants. In addition, an integrated regulatory network of anthocyanin biosynthesis controlled by transcription factors is discussed based on the significant progress.
Collapse
Affiliation(s)
- Yanyun Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xu Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China;
| | - Weilin Wu
- Agricultural College, Yanbian University, Yanji 133002, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (Y.M.); (X.M.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (W.W.); (B.Z.); Tel.: +86-183-4338-8262 (W.W.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
17
|
Wang J, Zhang J, Li J, Dawuda MM, Ali B, Wu Y, Yu J, Tang Z, Lyu J, Xiao X, Hu L, Xie J. Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:683868. [PMID: 34220904 PMCID: PMC8243651 DOI: 10.3389/fpls.2021.683868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 05/03/2023]
Abstract
5-Aminolevulinic acid (ALA) plays an important role in plant growth and development. It can also be used to enhance crop resistance to environmental stresses and improve the color and internal quality of fruits. However, there are limited reports regarding the effects of ALA on tomato fruit color and its regulatory mechanisms. Therefore, in this study, the effects of exogenous ALA on the quality and coloration of tomato fruits were examined. Tomato (Solanum lycopersicum "Yuanwei No. 1") fruit surfaces were treated with different concentrations of ALA (0, 100, and 200 mg⋅L-1) on the 24th day after fruit setting (mature green fruit stage), and the content of soluble sugar, titratable acid, soluble protein, vitamin C, and total free amino acids, as well as amino acid components, intermediates of lycopene synthetic and metabolic pathways, and ALA metabolic pathway derivatives were determined during fruit ripening. The relative expression levels of genes involved in lycopene synthesis and metabolism and those involved in ALA metabolism were also analyzed. The results indicated that exogenous ALA (200 mg⋅L-1) increased the contents of soluble sugars, soluble proteins, total free amino acids, and vitamin C as well as 11 kinds of amino acid components in tomato fruits and reduced the content of titratable acids, thus improving the quality of tomato fruits harvested 4 days earlier than those of the control plants. In addition, exogenous ALA markedly improved carotenoid biosynthesis by upregulating the gene expression levels of geranylgeranyl diphosphate synthase, phytoene synthase 1, phytoene desaturase, and lycopene β-cyclase. Furthermore, exogenous ALA inhibited chlorophyll synthesis by downregulating the genes expression levels of Mg-chelatase and protochlorophyllide oxidoreductase. These findings suggest that supplementation with 200 mg⋅L-1 ALA not only enhances the nutritional quality and color of the fruit but also promotes early fruit maturation in tomato.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
18
|
Zheng J, Liu L, Tao H, An Y, Wang L. Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:640606. [PMID: 33841467 PMCID: PMC8033201 DOI: 10.3389/fpls.2021.640606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/30/2023]
Abstract
The red color is an attractive trait of fruit and determines its market acceptance. 5-Aminolevulinic acid (ALA), an eco-friendly plant growth regulator, has played a universal role in plant secondary metabolism regulation, particularly in flavonoid biosynthesis. It has been widely reported that ALA can up-regulate expression levels of several structural genes related to flavonoid metabolism and anthocyanin accumulation. However, the molecular mechanisms behind ALA-induced expression of these genes are complicated and still far from being completely understood. In this study, transcriptome analysis identified the differentially expressed genes (DEGs) associated with ALA-induced anthocyanin accumulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the flavonoid biosynthesis (ko00941) pathway was significantly enhanced in the ALA-treated apple calli at 24, 48, and 72 h after the treatment. Expression pattern revealed that ALA up-regulated the expression of the structural genes related to not only anthocyanin biosynthesis (MdCHS, MdCHI, MdF3'H, MdDFR, MdANS, and MdUFGT) but also anthocyanin transport (MdGST and MdMATE). Two R2R3-MYB transcription factors (MdMYB10 and MdMYB9), which are the known positive regulators of anthocyanin biosynthesis, were significantly induced by ALA. Gene overexpression and RNA interference assays demonstrated that MdMYB10 and MdMYB9 were involved in ALA-induced anthocyanin biosynthesis. Moreover, MdMYB10 and MdMYB9 might positively regulate the transcription of MdMATE8 by binding to the promoter region. These results indicate that MdMYB10 and MdMYB9 modulated structural gene expression of anthocyanin biosynthesis and transport in response to ALA-mediated apple calli coloration at the transcript level. We herein provide new details regarding transcriptional regulation of ALA-induced color development.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Huaibei Normal University, Huaibei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Longbo Liu
- School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Huihui Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
20
|
Photosynthetic Responses of Canola to Exogenous Application or Endogenous Overproduction of 5-Aminolevulinic Acid (ALA) under Various Nitrogen Levels. PLANTS 2020; 9:plants9111419. [PMID: 33114095 PMCID: PMC7690814 DOI: 10.3390/plants9111419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Limited data are available on the effects of 5-aminolevulinic acid (ALA) on plant photosynthesis in relation to the nitrogen (N) level. In this study, we investigate photosynthetic responses to ALA in canola plants (Brassica napus L.). We used wild-type plants without ALA addition (controls), wild-type plants with exogenous ALA application, and transgenic plants that endogenously overproduced ALA. The plants were grown hydroponically in nutrient solutions with low, middle, and high concentrations of N. Our results indicate that plants in both treatment groups had higher chlorophyll contents and net photosynthetic rates and lower intracellular CO2 concentrations in the leaves, as compared to controls. Furthermore, simultaneous measurement of prompt chlorophyll fluorescence and modulated 820-nm reflections showed that the active photosystem II (PS II) reaction centers, electron transfer capacity, and photosystem I (PS I) activity were all higher in treated plants than controls at all N levels; however, the responses of some photochemical processes to ALA were significantly affected by the N level. For example, under low N conditions only, a negative ΔK peak appeared in the prompt chlorophyll fluorescence curve, indicating a protective effect of ALA on electron donation via activation of the oxygen-evolving complex. Taken together, our findings suggest that ALA contributes to the promotion of photosynthesis by regulating photosynthetic electron transport under various N levels. These findings may provide a new strategy for improving photosynthesis in crops grown in N-poor conditions or reduced N-fertilization requirements.
Collapse
|
21
|
Genome-wide identification and comparative analysis of GST gene family in apple ( Malus domestica) and their expressions under ALA treatment. 3 Biotech 2020; 10:307. [PMID: 32582504 DOI: 10.1007/s13205-020-02299-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins, a subclass of flavonoids, are synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER), which then accumulate in vacuoles. Plant glutathione S-transferase (GST) genes are involved in anthocyanin transportation. Here, a total of 52, 42, 50, and 29 GST genes were identified from apple, pear, peach, and strawberry, respectively, through a comprehensive genome-wide survey. Based on phylogenetic analyses, the GST proteins of the four crops could be divided into the classes Phi, Tau, DHAR, TCHQD, and Lambda. The structure and chromosomal distribution of apple GST genes were further analyzed. The GST gene family expansion in apple likely occurred through tandem duplications, and purifying selection played a pivotal role in the evolution of GST genes. Synteny analysis showed strong microsynteny between apple and Arabidopsis/strawberry, but no microsynteny was detected between apple/strawberry/Arabidopsis and rice. Aminolevulinic acid (ALA), a key precursor of tetrapyrrole compounds, can significantly improve anthocyanin accumulation in fruits, Using RNA-seq and qRT-PCR analysis, we found that ALA treatment led to the differential expression of GST genes in apples. MdGSTF12 was strongly induced by ALA, suggesting that MdGSTF12 may play a role in ALA-induced anthocyanin accumulation. These results provide a detailed overview of GST genes in four Rosaceae species and indicate that GSTs are involved in ALA-induced anthocyanin accumulation.
Collapse
|
22
|
An Y, Xiong L, Hu S, Wang L. PP2A and microtubules function in 5-aminolevulinic acid-mediated H 2 O 2 signaling in Arabidopsis guard cells. PHYSIOLOGIA PLANTARUM 2020; 168:709-724. [PMID: 31381165 DOI: 10.1111/ppl.13016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
5-aminolevulinic acid (ALA), a plant growth regulator with great application potential in agriculture and horticulture, induces stomatal opening and inhibits stomatal closure by decreasing guard cell H2 O2 . However, the mechanisms behind ALA-decreased H2 O2 in guard cells are not fully understood. Here, using type 2A protein phosphatase (PP2A) inhibitors, microtubule-stabilizing/disrupting drugs and green fluorescent protein-tagged α-tubulin 6 transgenic Arabidopsis (GFP-TUA6), we find that PP2A and cortical microtubules (MTs) are involved in ALA-regulated stomatal movement. Then, we analyze stomatal responses of Arabidopsis overexpressing C2 catalytic subunit of PP2A (PP2A-C2) and pp2a-c2 mutant to ALA and abscisic acid (ABA) under both light and dark conditions, and show that PP2A-C2 participates in ALA-induced stomatal movement. Furthermore, using pharmacological methods and confocal studies, we reveal that PP2A and MTs function upstream and downstream, respectively, of H2 O2 in guard cell signaling. Finally, we demonstrate the role of H2 O2 -mediated microtubule arrangement in ALA inhibiting ABA-induced stomatal closure. Our findings indicate that MTs regulated by PP2A-mediated H2 O2 decreasing play an important role in ALA guard cell signaling, revealing new insights into stomatal movement regulation.
Collapse
Affiliation(s)
- Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Li J, An Y, Wang L. Transcriptomic Analysis of Ficus carica Peels with a Focus on the Key Genes for Anthocyanin Biosynthesis. Int J Mol Sci 2020; 21:ijms21041245. [PMID: 32069906 PMCID: PMC7072940 DOI: 10.3390/ijms21041245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023] Open
Abstract
Fig (Ficus carica L.), a deciduous fruit tree of the Moraceae, provides ingredients for human health such as anthocyanins. However, little information is available on its molecular structure. In this study, the fig peels in the yellow (Y) and red (R) stages were used for transcriptomic analyses. Comparing the R with the Y stage, we obtained 6224 differentially expressed genes, specifically, anthocyanin-related genes including five CHS, three CHI, three DFR, three ANS, two UFGT and seven R2R3-MYB genes. Furthermore, three anthocyanin biosynthetic genes, i.e., FcCHS1, FcCHI1 and FcDFR1, and two R2R3-MYB genes, i.e., FcMYB21 and FcMYB123, were cloned; sequences analysis and their molecular characteristics indicated their important roles in fig anthocyanin biosynthesis. Heterologous expression of FcMYB21 and FcMYB123 significantly promoted anthocyanin accumulation in both apple fruits and calli, further suggesting their regulatory roles in fig coloration. These findings provide novel insights into the molecular mechanisms behind fig anthocyanin biosynthesis and coloration, facilitating the genetic improvement of high-anthocyanin cultivars and other horticultural traits in fig fruits.
Collapse
|
24
|
Zhao HB, Jia HM, Wang Y, Wang GY, Zhou CC, Jia HJ, Gao ZS. Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra). Gene 2019; 717:144045. [PMID: 31425741 DOI: 10.1016/j.gene.2019.144045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
The MADS-box gene family encodes transcription factors and plays an important role in plant growth and the development of flower and fruit. A perennial dioecious plant, the red bayberry genome has been published recently, providing the opportunity to analyze the MADS-box gene family and its role in fruit development and ripening. Here, we identified 54 MADS-box genes in the red bayberry genome, and classified them into two types based on phylogenetic analysis. Thirteen Type I MADS-box genes were subdivided into three subfamilies and 41 Type II MADS-box genes into 13 subfamilies. A total of 46 MADS-box genes were distributed across eight red bayberry chromosomes, and the other eight genes were located on the unmapped scaffolds. Transcriptome analysis suggested that the expression of most Type II genes was higher than Type I in five female tissues. Moreover, 26 MADS-box genes were expressed during red bayberry fruit development and ten of them showed high expression. qRT-PCR showed that the expression of MrMADS01 (SEP, MIKCC), with differences between the pale pink and red varieties, increased significantly at the final ripening stage, suggesting it may participate in ripening as positive regulator and related to anthocyanin biosynthesis. These results provide some clues for future study of MADS-box genes in red bayberry, especially in ripening process.
Collapse
Affiliation(s)
- Hai-Bo Zhao
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui-Min Jia
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; current address: Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Yan Wang
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guo-Yun Wang
- Agriculture Extensions and Services Station, Bureau of Agriculture and Rural Affairs, Yuyao, Ningbo 315400, China
| | - Chao-Chao Zhou
- Agriculture Extensions and Services Station, Bureau of Agriculture and Rural Affairs, Yuyao, Ningbo 315400, China
| | - Hui-Juan Jia
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhong-Shan Gao
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Liu T, Du Q, Li S, Yang J, Li X, Xu J, Chen P, Li J, Hu X. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC PLANT BIOLOGY 2019; 19:323. [PMID: 31319801 PMCID: PMC6639942 DOI: 10.1186/s12870-019-1929-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exogenous 5-aminolevulinic acid (ALA) positively regulates plants chlorophyll synthesis and protects them against environmental stresses, although the protection mechanism is not fully clear. Here, we explored the effects of ALA on chlorophyll synthesis in tomato plants, which are sensitive to low temperature. We also examined the roles of the glutathione S-transferase (GSTU43) gene, which is involved in ALA-induced tolerance to oxidation stress and regulation of chlorophyll synthesis under low temperature. RESULTS Exogenous ALA alleviated low temperature caused chlorophyll synthesis obstacle of uroporphyrinogen III (UROIII) conversion to protoporphyrin IX (Proto IX), and enhanced the production of chlorophyll and its precursors, including endogenous ALA, Proto IX, Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl), under low temperature in tomato leaves. However, ALA did not regulate chlorophyll synthesis at the level of transcription. Notably, ALA up-regulated the GSTU43 gene and protein expression and increased GST activity. Silencing of GSTU43 with virus-induced gene silencing reduced the activities of GST, superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and increased the membrane lipid peroxidation; while fed with ALA significant increased all these antioxidase activities and antioxidant contents, and alleviated the membrane damage. CONCLUSIONS ALA triggered GST activity encoded by GSTU43, and increased tomato tolerance to low temperature-induced oxidative stress, perhaps with the assistance of ascorbate- and/or a glutathione-regenerating cycles, and actively regulated the plant redox homeostasis. This latter effect reduced the degree of membrane lipid peroxidation, which was essential for the coordinated synthesis of chlorophyll.
Collapse
Affiliation(s)
- Tao Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Qingjie Du
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Suzhi Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jianyu Yang
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaojing Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jiaojiao Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Pengxiang Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianming Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaohui Hu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| |
Collapse
|
26
|
Shahan R, Li D, Liu Z. Identification of genes preferentially expressed in wild strawberry receptacle fruit and demonstration of their promoter activities. HORTICULTURE RESEARCH 2019; 6:50. [PMID: 31044078 PMCID: PMC6491448 DOI: 10.1038/s41438-019-0134-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 05/11/2023]
Abstract
Fragaria vesca (F. vesca), the wild strawberry, is a diploid model for the commercial, octoploid strawberry as well as other members of the economically relevant Rosaceae family. Unlike the fruits of tomato and Arabidopsis, the fleshy fruit of strawberry is unique in that it is derived from the floral receptacle and has an external seed configuration. Thus, identification and subsequent characterization of receptacle-expressed genes may shed light on novel developmental processes or provide insight into how developmental regulation differs between receptacle-derived and ovary-derived fruits. Further, since fruit and flower tissues are the last organs to form on a plant, the development of receptacle fruit-specific promoters may provide useful molecular tools for research and application. In this work, we mined previously generated RNA-Seq datasets and identified 589 genes preferentially expressed in the strawberry receptacle versus all other profiled tissues. Promoters of a select subset of the 589 genes were isolated and their activities tested using a GUS transcriptional reporter. These promoters may now be used by the F. vesca research community for a variety of purposes, including driving expression of tissue-specific reporters, RNAi constructs, or specific genes to manipulate fruit development. Further, identified genes with receptacle-specific expression patterns, including MADS-Box and KNOX family transcription factors, are potential key regulators of fleshy fruit development and attractive candidates for functional characterization.
Collapse
Affiliation(s)
- Rachel Shahan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
- Present Address: Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC 27708 USA
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
27
|
Ethylene -dependent and -independent superficial scald resistance mechanisms in 'Granny Smith' apple fruit. Sci Rep 2018; 8:11436. [PMID: 30061655 PMCID: PMC6065312 DOI: 10.1038/s41598-018-29706-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Superficial scald is a major physiological disorder of apple fruit (Malus domestica Borkh.) characterized by skin browning following cold storage; however, knowledge regarding the downstream processes that modulate scald phenomenon is unclear. To gain insight into the mechanisms underlying scald resistance, ‘Granny Smith’ apples after harvest were treated with diphenylamine (DPA) or 1-methylcyclopropene (1-MCP), then cold stored (0 °C for 3 months) and subsequently were ripened at room temperature (20 °C for 8 days). Phenotypic and physiological data indicated that both chemical treatments induced scald resistance while 1-MCP inhibited the ethylene-dependent ripening. A combination of multi-omic analysis in apple skin tissue enabled characterization of potential genes, proteins and metabolites that were regulated by DPA and 1-MCP at pro-symptomatic and scald-symptomatic period. Specifically, we characterized strata of scald resistance responses, among which we focus on selected pathways including dehydroabietic acid biosynthesis and UDP-D-glucose regulation. Through this approach, we revealed scald-associated transcriptional, proteomic and metabolic signatures and identified pathways modulated by the common or distinct functions of DPA and 1-MCP. Also, evidence is presented supporting that cytosine methylation-based epigenetic regulation is involved in scald resistance. Results allow a greater comprehension of the ethylene–dependent and –independent metabolic events controlling scald resistance.
Collapse
|
28
|
Hu P, Li G, Zhao X, Zhao F, Li L, Zhou H. Transcriptome profiling by RNA-Seq reveals differentially expressed genes related to fruit development and ripening characteristics in strawberries ( Fragaria × ananassa). PeerJ 2018; 6:e4976. [PMID: 29967718 PMCID: PMC6026456 DOI: 10.7717/peerj.4976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/24/2018] [Indexed: 11/21/2022] Open
Abstract
Strawberry (Fragaria × ananassa) is an ideal plant for fruit development and ripening research due to the rapid substantial changes in fruit color, aroma, taste, and softening. To gain deeper insights into the genes that play a central regulatory role in strawberry fruit development and ripening characteristics, transcriptome profiling was performed for the large green fruit, white fruit, turning fruit, and red fruit stages of strawberry. A total of 6,608 differentially expressed genes (DEGs) with 2,643 up-regulated and 3,965 down-regulated genes were identified in the fruit development and ripening process. The DEGs related to fruit flavonoid biosynthesis, starch and sucrose biosynthesis, the citrate cycle, and cell-wall modification enzymes played important roles in the fruit development and ripening process. Particularly, some candidate genes related to the ubiquitin mediated proteolysis pathway and MADS-box were confirmed to be involved in fruit development and ripening according to their possible regulatory functions. A total of five ubiquitin-conjugating enzymes and 10 MADS-box transcription factors were differentially expressed between the four fruit ripening stages. The expression levels of DEGs relating to color, aroma, taste, and softening of fruit were confirmed by quantitative real-time polymerase chain reaction. Our study provides important insights into the complicated regulatory mechanism underlying the fruit ripening characteristics in Fragaria × ananassa.
Collapse
Affiliation(s)
- Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Liangjie Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|