1
|
Zhu L, Shen Y, Dai Z, Miao X, Shi Z. Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice. RICE (NEW YORK, N.Y.) 2024; 17:59. [PMID: 39249660 PMCID: PMC11384671 DOI: 10.1186/s12284-024-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyan Dai
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Yang Q, Luo L, Jiao X, Chen X, Liu Y, Liu Z. APETALA2-like Floral Homeotic Protein Up-Regulating FaesAP1_2 Gene Involved in Floral Development in Long-Homostyle Common Buckwheat. Int J Mol Sci 2024; 25:7193. [PMID: 39000299 PMCID: PMC11241573 DOI: 10.3390/ijms25137193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor (TF) is required for specifying the sepals and petals identities and confers a major A-function to antagonize the C-function in the outer floral whorls. In the asterid species Petunia, the AP2-type ROB TFs are required for perianth and pistil development, as well as repressing the B-function together with TOE-type TF BEN. In Long-homostyle (LH) Fagopyrum esculentum, VIGS-silencing showed that FaesAP2 is mainly involved in controlling filament and style length, but FaesTOE is mainly involved in regulating filament length and pollen grain development. Both FaesAP2 (AP2-type) and FaesTOE (TOE-type) are redundantly involved in style and/or filament length determination instead of perianth development. However, neither FaesAP2 nor FaesTOE could directly repress the B and/or C class genes in common buckwheat. Moreover, the FaesAP1_2 silenced flower showed tepal numbers, and filament length decreased obviously. Interestingly, yeast one-hybrid (Y1H) and dual-luciferase reporter (DR) further suggested that FaesTOE directly up-regulates FaesAP1_2 to be involved in filament length determination in LH common buckwheat. Moreover, the knockdown of FaesTOE expression could result in expression down-regulation of the directly target FaesAP1_2 in the FaesTOE-silenced LH plants. Our findings uncover a stamen development pathway in common buckwheat and offer deeper insight into the functional evolution of AP2 orthologs in the early-diverging core eudicots.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (Q.Y.); (L.L.); (X.J.); (X.C.); (Y.L.)
| |
Collapse
|
3
|
Liu E, Zhu S, Du M, Lyu H, Zeng S, Liu Q, Wu G, Jiang J, Dang X, Dong Z, Hong D. LAX1, functioning with MADS-box genes, determines normal palea development in rice. Gene 2023; 883:147635. [PMID: 37442304 DOI: 10.1016/j.gene.2023.147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.
Collapse
Affiliation(s)
- Erbao Liu
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Shangshang Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyu Du
- College of Agriculture, Anhui Agricultural University, Hefei 230036, China
| | - Huineng Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyuan Zeng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guocan Wu
- Ningde Institute of Agricultural Sciences, Ningde 355017, China
| | - Jianhua Jiang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Xiaojing Dang
- Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Zhiyao Dong
- College of Life Sciences, Jilin Normal University, Jilin 136000, China
| | - Delin Hong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Mao X, Zheng X, Chen W, Li C. Characterization and Gene Mapping of an Open-Glume Oryza sativa L. Mutant. Int J Mol Sci 2023; 24:12702. [PMID: 37628883 PMCID: PMC10454609 DOI: 10.3390/ijms241612702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Floral organ development determines agricultural productivity by affecting seed development, seed quality, and final yield. In this study, we described the novel ogl mutant in rice (Oryza sativa L.), which is characterized by an open-glume phenotype, increased pistil number, reduced stamen number, decreased seed setting rate, and smaller rice grains. Genetic analysis showed that the open-glume phenotype might be controlled by a recessive qualitative trait locus. Employing bulked segregant analysis (BSA), one candidate region was identified on rice chromosome 1. The glume opening phenotype cosegregated with SNP (Chr1:1522703), which was located at the start codon of one transcript of OsJAG, resulting in partial loss of OsJAG function. cDNA analysis revealed that OsJAG encodes two transcript variants. Compared to normal plants, the expression of OsJAG.1 was upregulated in open-glume plants. When investigating the glume phenotype, we found that the expression of genes related to floral development changed greatly in open-glume plants. Taken together, this work increases our understanding of the developmental role of OsJAG in rice floral development.
Collapse
Affiliation(s)
- Xingxue Mao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| | - Xiaoyu Zheng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| | - Wenfeng Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
| |
Collapse
|
5
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
6
|
Zhan P, Ma S, Xiao Z, Li F, Wei X, Lin S, Wang X, Ji Z, Fu Y, Pan J, Zhou M, Liu Y, Chang Z, Li L, Bu S, Liu Z, Zhu H, Liu G, Zhang G, Wang S. Natural variations in grain length 10 (GL10) regulate rice grain size. J Genet Genomics 2022; 49:405-413. [DOI: 10.1016/j.jgg.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
7
|
Yang X, Zhao X, Dai Z, Ma F, Miao X, Shi Z. OsmiR396/growth regulating factor modulate rice grain size through direct regulation of embryo-specific miR408. PLANT PHYSIOLOGY 2021; 186:519-533. [PMID: 33620493 PMCID: PMC8154042 DOI: 10.1093/plphys/kiab084] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 05/23/2023]
Abstract
microRNAs (miRNAs) are promising targets for crop improvement of complex agricultural traits. Coordinated activity between/among different miRNAs may fine-tune specific developmental processes in diverse organisms. Grain size is a main factor determining rice (Oryza sativa L.) crop yield, but the network of miRNAs influencing this trait remains uncharacterized. Here we show that sequestering OsmiR396 through target mimicry (MIM396) can substantially increase grain size in several japonica and indica rice subspecies and in plants with excessive tillers and a high panicle density. Thus, OsmiR396 has a major role related to the regulation of rice grain size. The grain shape of Growth Regulating Factor8 (OsGRF8)-overexpressing transgenic plants was most similar to that of MIM396 plants, suggesting OsGRF8 is a major mediator of OsmiR396 in grain size regulation. A miRNA microarray analysis revealed changes to the expression of many miRNAs, including OsmiR408, in the MIM396 plants. Analyses of gene expression patterns and functions indicated OsmiR408 is an embryo-specific miRNA that positively regulates grain size. Silencing OsmiR408 expression (miR408KO) using CRISPR technology resulted in small grains. Moreover, we revealed the direct regulatory effects of OsGRF8 on OsMIR408 expression. A genetic analysis further showed that the large-grain phenotype of MIM396 plants could be complemented by miR408KO. Also, several hormone signaling pathways might be involved in the OsmiR396/GRF-meditated grain size regulation. Our findings suggest that genetic regulatory networks comprising various miRNAs, such as OsmiR396 and OsmiR408, may be crucial for controlling rice grain size. Furthermore, the OsmiR396/GRF module may be important for breeding new high-yielding rice varieties.
Collapse
Affiliation(s)
- Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoling Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengyan Dai
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feilong Ma
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Shoesmith JR, Solomon CU, Yang X, Wilkinson LG, Sheldrick S, van Eijden E, Couwenberg S, Pugh LM, Eskan M, Stephens J, Barakate A, Drea S, Houston K, Tucker MR, McKim SM. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development 2021; 148:dev.194894. [DOI: 10.1242/dev.194894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cereal grain develops from fertilised florets. Alterations in floret and grain development greatly influence grain yield and quality. Despite this, little is known about the underlying genetic control of these processes, especially in key temperate cereals such as barley and wheat. Using a combination of near-isogenic mutant comparisons, gene editing and genetic analyses, we reveal that HvAPETALA2 (HvAP2) controls floret organ identity, floret boundaries, and maternal tissue differentiation and elimination during grain development. These new roles of HvAP2 correlate with changes in grain size and HvAP2-dependent expression of specific HvMADS-box genes, including the B-sister gene, HvMADS29. Consistent with this, gene editing demonstrates that HvMADS29 shares roles with HvAP2 in maternal tissue differentiation. We also discovered that a gain-of-function HvAP2 allele masks changes in floret organ identity and grain size due to loss of barley LAXATUM.A/BLADE-ON-PETIOLE2 (HvBOP2) gene function. Taken together, we reveal novel pleiotropic roles and regulatory interactions for an AP2-like gene controlling floret and grain development in a temperate cereal.
Collapse
Affiliation(s)
- Jennifer R. Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Charles Ugochukwu Solomon
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Nigeria
| | - Xiujuan Yang
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Laura G. Wilkinson
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott Sheldrick
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Ewan van Eijden
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sanne Couwenberg
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Laura M. Pugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie DD2 5DA, UK
| | - Matthew R. Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Sarah M. McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Invergowrie DD2 5DA, UK
| |
Collapse
|
9
|
Valentini N, Portis E, Botta R, Acquadro A, Pavese V, Cavalet Giorsa E, Torello Marinoni D. Mapping the Genetic Regions Responsible for Key Phenology-Related Traits in the European Hazelnut. FRONTIERS IN PLANT SCIENCE 2021; 12:749394. [PMID: 35003153 PMCID: PMC8733624 DOI: 10.3389/fpls.2021.749394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/24/2021] [Indexed: 05/03/2023]
Abstract
An increasing interest in the cultivation of (European) hazelnut (Corylus avellana) is driving a demand to breed cultivars adapted to non-conventional environments, particularly in the context of incipient climate change. Given that plant phenology is so strongly determined by genotype, a rational approach to support these breeding efforts will be to identify quantitative trait loci (QTLs) and the genes underlying the basis for adaptation. The present study was designed to map QTLs for phenology-related traits, such as the timing of both male and female flowering, dichogamy, and the period required for nuts to reach maturity. The analysis took advantage of an existing linkage map developed from a population of F1 progeny bred from the cross "Tonda Gentile delle Langhe" × "Merveille de Bollwiller," consisting in 11 LG. A total of 42 QTL-harboring regions were identified. Overall, 71 QTLs were detected, 49 on the TGdL map and 22 on the MB map; among these, 21 were classified as major; 13 were detected in at least two of the seasons (stable-major QTL). In detail, 20 QTLs were identified as contributing to the time of male flowering, 15 to time of female flowering, 25 to dichogamy, and 11 to time of nut maturity. LG02 was found to harbor 16 QTLs, while 15 QTLs mapped to LG10 and 14 to LG03. Many of the QTLs were clustered with one another. The major cluster was located on TGdL_02 and consisted of mainly major QTLs governing all the analyzed traits. A search of the key genomic regions revealed 22 candidate genes underlying the set of traits being investigated. Many of them have been described in the literature as involved in processes related to flowering, control of dormancy, budburst, the switch from vegetative to reproductive growth, or the morphogenesis of flowers and seeds.
Collapse
|
10
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Genome-Wide Identification and Characterization of the ALOG Domain Genes in Rice. Int J Genomics 2019; 2019:2146391. [PMID: 30923712 PMCID: PMC6409076 DOI: 10.1155/2019/2146391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/06/2019] [Indexed: 11/17/2022] Open
Abstract
The ALOG domain genes, named after the Arabidopsis LSH1 and Oryza G1 (ALOG) proteins, have frequently been reported as key developmental regulators in rice and Arabidopsis. However, the investigation of the ALOG gene family is limited. Here, we conducted a genome-wide investigation of the ALOG gene family in rice and six other species. In total, eighty-four ALOG domain genes were identified from the seven species, of which fourteen ALOG domain genes (OsG1/G1Ls) were identified in the rice genome. The fourteen OsG1/G1Ls were unevenly distributed on eight chromosomes, and we found that eight segmental duplications contributed to the expansion of OsG1/G1Ls in the rice genome. The eighty-four ALOG family genes from seven species were classified into six clusters, and the ALOG domain-defined motifs 1, 2, and 3 were highly conserved across species according to the phylogenetic and structural analysis. However, the newly identified motifs 4 and 5 were only present in monocots, indicating a specified function in monocots. Moreover, OsG1/G1Ls exhibited tissue-specific expression patterns. Coexpression analysis suggested that OsG1 integrates OsMADS50 and the downstream MADS-box genes, such as OsMADS1, to regulate the development of rice inflorescence; OsG1L7 potentially associates with OsMADS22 and OsMADS55 to regulate stem elongation. In addition, comparative expression analysis revealed the conserved biological functions of ALOG family genes among rice, maize, and Arabidopsis. These results have shed light on the functional study of ALOG family genes in rice and other plants.
Collapse
|
12
|
Dai Z, Wang J, Yang X, Lu H, Miao X, Shi Z. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5117-5130. [PMID: 30053063 PMCID: PMC6184515 DOI: 10.1093/jxb/ery273] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/16/2018] [Indexed: 05/18/2023]
Abstract
Tiller number and plant height are two of the main features of plant architecture that directly influence rice yield. Auxin and miR156, an extensively studied small RNA (smRNA), are both broadly involved in plant development and physiology, suggesting a possible relationship between the two. In this study, we identified a rice T-DNA insertion cluster and dwarf (cd) mutant that has an increased tiller number and reduced plant height. The T-DNA insertion was in close proximity to the miR156f gene and was associated with its up-regulation. Plants overexpressing miR156f resembled the cd mutant. In contrast, plants overexpressing an miR156f target mimic (MIM156fOE) had a reduced tiller number and increased height. Genetic analysis showed that OsSPL7 is a target of miR156f that regulates plant architecture. Plants overexpressing OsSPL7 had a reduced tiller number, while OsSPL7 RNAi plants had an increased tiller number and a reduced height. We also found that OsSPL7 binds directly to the OsGH3.8 promoter to regulate its transcription. Overexpression of OsGH3.8 and OsGH3.8 RNAi partially complemented the MIM156fOE and cd mutant phenotypes, respectively. Our combined data show that the miR156f-OsSPL7-OsGH3.8 pathway regulates tiller number and plant height in rice, and this pathway may allow crosstalk between miR156 and auxin.
Collapse
Affiliation(s)
- Zhengyan Dai
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Xiaofang Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences
| | - Huan Lu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Correspondence:
| |
Collapse
|
13
|
Wang Z, Xia Y, Lin S, Wang Y, Guo B, Song X, Ding S, Zheng L, Feng R, Chen S, Bao Y, Sheng C, Zhang X, Wu J, Niu D, Jin H, Zhao H. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:584-597. [PMID: 29775494 DOI: 10.1111/tpj.13972] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 05/11/2023]
Abstract
Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Siyuan Lin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanru Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Baohuan Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xiaoning Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shaochen Ding
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Liyu Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ruiying Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Shulin Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yalin Bao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Cong Sheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xin Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Jianguo Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongdong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|