1
|
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants. ANNALS OF BOTANY 2023; 131:387-409. [PMID: 36656070 PMCID: PMC10072107 DOI: 10.1093/aob/mcad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Elizabeth Blée
- Former Head of Phyto-oxylipins laboratory, Institute of Plant Molecular Biology, University of Strasbourg, France
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Treforest, UK
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
2
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Saadat F. A computational study on the structure-function relationships of plant caleosins. Sci Rep 2023; 13:72. [PMID: 36593238 PMCID: PMC9807586 DOI: 10.1038/s41598-022-26936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
Plant cells store energy in oil bodies constructed by structural proteins such as oleosins and caleosins. Although oil bodies usually accumulate in the seed and pollen of plants, caleosins are present in various organs and organelles. This issue, coupled with the diverse activities of caleosins, complicates the description of these oleo-proteins. Therefore, the current article proposes a new classification based on the bioinformatics analysis of the transmembrane topology of caleosins. Accordingly, the non-membrane class are the most abundant and diverse caleosins, especially in lower plants. Comparing the results with other reports suggests a stress response capacity for these caleosins. However, other classes play a more specific role in germination and pollination. A phylogenetic study also revealed two main clades that were significantly different in terms of caleosin type, expression profile, molecular weight, and isoelectric point (P < 0.01). In addition to the biochemical significance of the findings, predicting the structure of caleosins is necessary for constructing oil bodies used in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fatemeh Saadat
- Biotechnology Department, College of Agriculture and Natural Resources, University of Tehran, Tehran, 4111, Iran.
| |
Collapse
|
4
|
Pongprayoon W, Panya A, Jaresitthikunchai J, Phaonakrop N, Roytrakul S. Phosphoprotein Profile of Rice ( Oryza sativa L.) Seedlings under Osmotic Stress after Pretreatment with Chitosan. PLANTS (BASEL, SWITZERLAND) 2022; 11:2729. [PMID: 36297750 PMCID: PMC9611960 DOI: 10.3390/plants11202729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
This study aims to identify novel chitosan (CTS)-responsive phosphoproteins in Leung Pratew 123 (LPT123) and Khao Dawk Mali 105 (KDML105) as drought-sensitive rice cultivars and differences in the CTS response. Rice seeds were soaked in CTS solution before germination, and 2- and 4-week-old rice seedlings sprayed with CTS before osmotic stress comprised the following four groups: (1) seedlings treated with distilled water; (2) seedlings treated with CTS; (3) seedlings pretreated with distilled water and subjected to osmotic stress; and (4) seedlings pretreated with CTS and subjected to osmotic stress. Phosphoproteins of leaf tissues were enriched using immobilized metal affinity chromatography (IMAC) before tryptic digestion and analysis via LC-MS. Phosphoprotein profiling analyses led to the identification of 4721 phosphoproteins representing 1052 and 1040 unique phosphoproteins in the LPT123 and KDML105 seedlings, respectively. In response to CTS pretreatment before osmotic stress, 22 differently expressed proteins were discovered, of which 10 and 12 were identified in the LPT123 and KDML105, respectively. These proteins are typically involved in signaling, transport, protein folding, protein degradation, and metabolism. This study provides fruitful data to understand the signal transduction mechanisms of rice seedlings pretreated with CTS before exposure to osmotic stress.
Collapse
Affiliation(s)
- Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, 169 Longhaad Bangsaen Rd, Saensook, Mueang, Chonburi 20131, Thailand
| | - Atikorn Panya
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Liu X, Yang Z, Wang Y, Shen Y, Jia Q, Zhao C, Zhang M. Multiple caleosins have overlapping functions in oil accumulation and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3946-3962. [PMID: 35419601 DOI: 10.1093/jxb/erac153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Caleosins are lipid droplet- and endoplasmic reticulum-associated proteins. To investigate their functions in oil accumulation, expression levels of caleosins in developing seeds of Arabidopsis thaliana were examined and four seed-expressed caleosins (CLO1, CLO2, CLO4, and CLO6) were identified. The four single mutants showed similar minor changes of fatty acid composition in seeds. Two double mutants (clo1 clo2 and clo1×clo2) demonstrated distinct changes of fatty acid composition, a 16-23% decrease of oil content, and a 10-13% decrease of seed weight. Moreover, a 40% decrease of oil content, further fatty acid changes, and misshapen membranes of smaller lipid droplets were found in seeds of quadruple CLO RNAi lines. Notably, ~40% of quadruple CLO RNAi T1 seeds failed to germinate, and deformed embryos and seedlings were also observed. Complementation experiments showed that CLO1 rescued the phenotype of clo1 clo2. Overexpression of CLO1 in seedlings and BY2 cells increased triacylglycerol content up to 73.6%. Transcriptome analysis of clo1 clo2 developing seeds showed that expression levels of some genes related to lipid, embryo development, calcium signaling, and stress responses were affected. Together, these results suggest that the major seed-expressed caleosins have overlapping functions in oil accumulation and show pleiotropic effects on embryo development.
Collapse
Affiliation(s)
- Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Yun Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Qingli Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Jing P, Kong D, Ji L, Kong L, Wang Y, Peng L, Xie G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:800-815. [PMID: 33179343 DOI: 10.1111/tpj.15074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Caleosins constitute a small protein family with one calcium-binding EF-hand motif. They are involved in the regulation of development and response to abiotic stress in plants. Nevertheless, how they impact salt stress tolerance in rice is largely unknown. Thereby, biochemical and molecular genetic experiments were carried out, and the results revealed that OsClo5 was able to bind calcium and phospholipids in vitro and localized in the nucleus and endoplasmic reticulum in rice protoplasts. At the germination and early seedlings stages, overexpression transgenic lines and T-DNA mutant lines exhibited reduced and increased tolerance to salt stress, respectively, compared with the wild-type. Yeast two-hybrid, bimolecular fluorescence complementation and in vitro pull-down assays demonstrated that the EF-hand motif of OsClo5 was essential for the interactions with itself and OsDi19-5. Yeast one-hybrid, electrophoretic migration shift and dual-luciferase reporter assays identified OsDi19-5 as a transcriptional repressor via the TACART cis-element in the promoters of two salt stress-related target genes, OsUSP and OsMST. In addition, OsClo5 enhanced the inhibitory effect of OsDi19-5 in the tobacco transient system, which was confirmed by qRT-PCR analysis in rice seedlings under salt stress. The collective results deepen the understanding of the molecular mechanism underlying the roles of caleosin in the salt stress response. These findings will also inform efforts to improve salt tolerance of rice.
Collapse
Affiliation(s)
- Pei Jing
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingxiao Ji
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Kong
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology & Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
8
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B 1 in aflatoxin-resistance BALB/C mouse. Toxicol Rep 2020; 7:795-804. [PMID: 32642446 PMCID: PMC7334552 DOI: 10.1016/j.toxrep.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The highly potent carcinogen, Aflatoxin B1, induces liver cancer in many animals including humans but some mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB1. Hepatic lipid droplets (LDs) ultimately impact the liver functions but their potential role in AFB1 detoxification has not been addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after exposure to 44 (low dose) or 663 (high dose) μg AFB1/kg of body weight. After 7 days, the liver of AFB1-dosed mice did not accumulate any detectable AFB1 or its metabolites and this was associated with a net increase in gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that hepatic LDs catalyze the in vitro activation of AFB1 into AFB1-exo-8,9-epoxide and subsequent hydrolysis of this epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and detoxifying of aflatoxins.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
9
|
Lamberti C, Nebbia S, Balestrini R, Marengo E, Manfredi M, Pavese V, Cirrincione S, Giuffrida MG, Cavallarin L, Acquadro A, Abbà S. Identification of a caleosin associated with hazelnut (Corylus avellana L.) oil bodies. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:404-409. [PMID: 32027456 DOI: 10.1111/plb.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Caleosins are involved in several cellular and biological processes that are closely associated with the synthesis, degradation and stability of oil bodies (OB). Because of the importance and the multiple roles of these OB-associated proteins, in silico identification of sequences corresponding to putative caleosins in the hazelnut genome has been performed, and the association with seed OB was verified using a proteomic approach. Five full-length sequences (CavCLO-H1, CavCLO-H2, CavCLO-H3, CavCLO-L1, CavCLO-L2), belonging to the two groups of caleosins (H and L), have been identified in the hazelnut genome. The number of identified caleosins is in agreement with that previously observed in other plant species, confirming that caleosins comprise small gene families in plants. A proteomic approach allowed us to verify only the presence of CavCLO-H1 in hazelnut OB, suggesting that several members inside this family could have different roles during plant growth and development. In silico analysis also suggests that CavCLO-H1 may act as a peroxygenase.
Collapse
Affiliation(s)
- C Lamberti
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy
| | - S Nebbia
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy
| | - R Balestrini
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy
| | - E Marengo
- DiSIT, Università del Piemonte Orientale, Alessandria, Italy
| | - M Manfredi
- DiSIT, Università del Piemonte Orientale, Alessandria, Italy
| | - V Pavese
- DiSAFA, Università di Torino, Grugliasco, Italy
| | - S Cirrincione
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy
| | - M G Giuffrida
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy
| | - L Cavallarin
- Istituto di Scienze delle Produzioni Alimentari, CNR, Grugliasco, Italy
| | - A Acquadro
- DiSAFA, Università di Torino, Grugliasco, Italy
| | - S Abbà
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy
| |
Collapse
|
10
|
Hanano A, Almousally I, Shaban M. Exposure of Aspergillus flavus NRRL 3357 to the Environmental Toxin, 2,3,7,8-Tetrachlorinated Dibenzo- p-Dioxin, Results in a Hyper Aflatoxicogenic Phenotype: A Possible Role for Caleosin/Peroxygenase (AfPXG). Front Microbiol 2019; 10:2338. [PMID: 31681203 PMCID: PMC6803392 DOI: 10.3389/fmicb.2019.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxins (AFs) as potent food contaminants are highly detrimental to human and animal health. The production of such biological toxins is influenced by environmental factors including pollutants, such as dioxins. Here, we report the biological feedback of an active AF-producer strain of A. flavus upon in vitro exposure to the most toxic congener of dioxins, the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). The phenotype of TCDD-exposed A. flavus was typified by a severe limitation in vegetative growth, activation of conidia formation and a significant boost in AF production. Furthermore, the level of reactive oxygen species (ROS) in fungal protoplast was increased (3.1- to 3.8-fold) in response to TCDD exposure at 10 and 50 ng mL-1, respectively. In parallel, superoxide dismutase (SOD) and catalase (CAT) activities were, respectively, increased by a factor of 2 and 3. In contrast to controls, transcript, protein and enzymatic activity of caleosin/peroxygenase (AfPXG) was also significantly induced in TCDD-exposed fungi. Subsequently, fungal cells accumulated fivefold more lipid droplets (LDs) than controls. Moreover, the TCDD-exposed fungi exhibited twofold higher levels of AFB1. Interestingly, TCDD-induced hyperaflatoxicogenicity was drastically abolished in the AfPXG-silencing strain of A. flavus, suggesting a role for AfPXG in fungal response to TCDD. Finally, TCDD-exposed fungi showed an increased in vitro virulence in terms of sporulation and AF production. The data highlight the possible effects of dioxin on aflatoxicogenicity of A. flavus and suggest therefore that attention should be paid in particular to the potential consequences of climate change on global food safety.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | | | | |
Collapse
|
11
|
Identification of a dioxin-responsive oxylipin signature in roots of date palm: involvement of a 9-hydroperoxide fatty acid reductase, caleosin/peroxygenase PdPXG2. Sci Rep 2018; 8:13181. [PMID: 30181584 PMCID: PMC6123484 DOI: 10.1038/s41598-018-31342-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/17/2018] [Indexed: 01/02/2023] Open
Abstract
Dioxins are highly hazardous pollutants that have well characterized impacts on both animal and human health. However, the biological effects of dioxins on plants have yet to be described in detail. Here we describe a dioxin-inducible caleosin/peroxygenase isoform, PdPXG2, that is mainly expressed in the apical zone of date palm roots and specifically reduces 9-hydroperoxide fatty acids. A characteristic spectrum of 18 dioxin-responsive oxylipin (DROXYL) congeners was also detected in date palm roots after exposure to dioxin. Of particular interest, six oxylipins, mostly hydroxy fatty acids, were exclusively formed in response to TCDD. The DROXYL signature was evaluated in planta and validated in vitro using a specific inhibitor of PdPXG2 in a root-protoplast system. Comparative analysis of root suberin showed that levels of certain monomers, especially the mono-epoxides and tri-hydroxides of C16:3 and C18:3, were significantly increased after exposure to TCDD. Specific inhibition of PdPXG2 activity revealed a positive linear relationship between deposition of suberin in roots and their permeability to TCDD. The results highlight the involvement of this peroxygenase in the plant response to dioxin and suggest the use of dioxin-responsive oxylipin signatures as biomarkers for plant exposure to this important class of xenobiotic contaminants.
Collapse
|
12
|
Rahman F, Hassan M, Rosli R, Almousally I, Hanano A, Murphy DJ. Evolutionary and genomic analysis of the caleosin/peroxygenase (CLO/PXG) gene/protein families in the Viridiplantae. PLoS One 2018; 13:e0196669. [PMID: 29771926 PMCID: PMC5957377 DOI: 10.1371/journal.pone.0196669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/06/2018] [Indexed: 12/04/2022] Open
Abstract
Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these genes are present in the vast majority of Viridiplantae taxa for which sequence data are available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green algae but are absent from the small number of sequenced Prasinophyceaen genomes. CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sister clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in all of the >300 sequenced Embryophyte genomes, where some species contain as many as 10–12 genes that have arisen via selective gene duplication. Angiosperm genomes harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L (low), where H-forms contain an additional C-terminal motif of about 30–50 residues that is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally both) of these isoforms per genome. Transcriptome and biochemical data show that CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer membranes. Many of the analysed isoforms also have peroxygenase activity and are involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viridiplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had already diverged from other Archaeplastidal groups such as the Rhodophyta and Glaucophyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the Embryophyte proteins have a much wider spectrum of roles and may have been instrumental in the colonisation of terrestrial habitats and the subsequent diversification as the major land flora.
Collapse
Affiliation(s)
- Farzana Rahman
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Mehedi Hassan
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
| | - Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Kuala Lumpur, Malaysia
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Ali SA, Parveen N, Ali AS. Links between the Prophet Muhammad (PBUH) recommended foods and disease management: A review in the light of modern superfoods. Int J Health Sci (Qassim) 2018; 12:61-69. [PMID: 29599697 PMCID: PMC5870322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrition and other bioactive natural products present in specific foods within a balanced diet play an indispensable role in maintaining and promoting human health. Plants are rich sources of a balanced nutrition because of high content of bioactive products; hence, most of them recently have acquired the status of superfoods. It has been used since ancient times for the treatment of various ailments, and these traditional medicines still remain as one of the most affordable and easily accessible sources of treatment in the primary health-care system. The scientifically based use of these superfoods date back to the era of Prophet Muhammad along with other historical uses of plant products. Prescription of a large number of herbal foods such as dates, pomegranate, olives, figs, grapes, and black seeds was successfully proposed by him. These recently have become superfoods with their powerful healing properties and act as favorable dietary interventions for disease prevention as well as for the good maintenance of health. The use of these foods as ingredients of natural origin with fewer side effects seems to be more favorable than the chemical treatment, which is often complicated. The present review is an attempt to provide a brief survey of the literature on scientifically based significance of these superfoods carried out by various researchers and exploration of a wide spectrum of their pharmacological actions which include antidiabetic, anticancer, immune modulator, analgesic, anti-inflammatory, and hepatoprotective properties.
Collapse
Affiliation(s)
- Sharique A. Ali
- Department of Bioatechnology and Zoology, Saifia College of Science, Bhopal - 462 001, Madhya Pradesh, India
| | - Naima Parveen
- Department of Bioatechnology and Zoology, Saifia College of Science, Bhopal - 462 001, Madhya Pradesh, India
| | - Ayesha S. Ali
- Department of Bioatechnology and Zoology, Saifia College of Science, Bhopal - 462 001, Madhya Pradesh, India
| |
Collapse
|