1
|
Collinson NP, Giri K, Kaur J, Spangenberg G, Malipatil M, Mann RC, Valenzuela I. Evaluating the Effects of Epichloë Fungal Endophytes of Perennial Ryegrass on the Feeding Behaviour and Life History of Rhopalosiphum padi. INSECTS 2024; 15:744. [PMID: 39452320 PMCID: PMC11508369 DOI: 10.3390/insects15100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is an economically significant pest of pasture grasses, the latter being capable of hosting several fungal endophyte-perennial ryegrass symbiota rich in alkaloids and toxic to vertebrates and invertebrates. Measuring aphid feeding behaviour can provide insights into the effectiveness and mode of action of different fungal endophytes. This study investigated the effects of different Epichloë-perennial ryegrass symbiota on the feeding behaviour of R. padi using the electrical penetration graph technique while also assessing the aphid life history. In most cases, endophytes had significant feeding deterrence and paired fecundity and mortality effects. But, in some instances, endophytes with the highest aphid mortality did not significantly deter feeding, suggesting a more complicated scenario of interactions between the relative concentration of metabolites, e.g., host plant defence response metabolites and alkaloids, and/or physical changes to leaf morphology. Overall, this study sheds light on the mode of action of Epichloë endophytes against aphids and highlights the importance of Epichloë-perennial ryegrass symbiota in the management of insect pests such as aphids in pasture-based grazing systems.
Collapse
Affiliation(s)
- Nicholas Paul Collinson
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Khageswor Giri
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| | - Jatinder Kaur
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German Spangenberg
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266000, China;
| | - Mallik Malipatil
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
- Department of Science, Health and Engineering, School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ross Cameron Mann
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| | - Isabel Valenzuela
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (N.P.C.); (K.G.); (J.K.)
| |
Collapse
|
2
|
Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: Navigating sequencing tools, microbial assembly, and functions to amplify plant fitness. Microbiol Res 2024; 279:127549. [PMID: 38056172 DOI: 10.1016/j.micres.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.
Collapse
Affiliation(s)
- Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Fernando K, Reddy P, Guthridge KM, Spangenberg GC, Rochfort SJ. A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites 2022; 12:metabo12010037. [PMID: 35050159 PMCID: PMC8781816 DOI: 10.3390/metabo12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Epichloë endophytes, fungal endosymbionts of Pooidae grasses, are commonly utilized in forage and turf industries because they produce beneficial metabolites that enhance resistance against environmental stressors such as insect feeding and disease caused by phytopathogen infection. In pastoral agriculture, phytopathogenic diseases impact both pasture quality and animal production. Recently, bioactive endophyte strains have been reported to secrete compounds that significantly inhibit the growth of phytopathogenic fungi in vitro. A screen of previously described Epichloë-produced antifeedant and toxic alkaloids determined that the antifungal bioactivity observed is not due to the production of these known metabolites, and so there is a need for methods to identify new bioactive metabolites. The process described here is applicable more generally for the identification of antifungals in new endophytes. This study aims to characterize the fungicidal potential of novel, ‘animal friendly’ Epichloë endophyte strains NEA12 and NEA23 that exhibit strong antifungal activity using an in vitro assay. Bioassay-guided fractionation, followed by metabolite analysis, identified 61 metabolites that, either singly or in combination, are responsible for the observed bioactivity. Analysis of the perennial ryegrass-endophyte symbiota confirmed that NEA12 and NEA23 produce the prospective antifungal metabolites in symbiotic association and thus are candidates for compounds that promote disease resistance in planta. The “known unknown” suite of antifungal metabolites identified in this study are potential biomarkers for the selection of strains that enhance pasture and turf production through better disease control.
Collapse
Affiliation(s)
- Krishni Fernando
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Priyanka Reddy
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
| | - Kathryn M. Guthridge
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
| | - German C. Spangenberg
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (K.M.G.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-390327110
| |
Collapse
|
4
|
Fernando K, Reddy P, Spangenberg GC, Rochfort SJ, Guthridge KM. Metabolic Potential of Epichloë Endophytes for Host Grass Fungal Disease Resistance. Microorganisms 2021; 10:64. [PMID: 35056512 PMCID: PMC8781568 DOI: 10.3390/microorganisms10010064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Asexual species of the genus Epichloë (Clavicipitaceae, Ascomycota) form endosymbiotic associations with Pooidae grasses. This association is important both ecologically and to the pasture and turf industries, as the endophytic fungi confer a multitude of benefits to their host plant that improve competitive ability and performance such as growth promotion, abiotic stress tolerance, pest deterrence and increased host disease resistance. Biotic stress tolerance conferred by the production of bioprotective metabolites has a critical role in an industry context. While the known antimammalian and insecticidal toxins are well characterized due to their impact on livestock welfare, antimicrobial metabolites are less studied. Both pasture and turf grasses are challenged by many phytopathogenic diseases that result in significant economic losses and impact livestock health. Further investigations of Epichloë endophytes as natural biocontrol agents can be conducted on strains that are safe for animals. With the additional benefits of possessing host disease resistance, these strains would increase their commercial importance. Field reports have indicated that pasture grasses associated with Epichloë endophytes are superior in resisting fungal pathogens. However, only a few antifungal compounds have been identified and chemically characterized, and these from sexual (pathogenic) Epichloë species, rather than those utilized to enhance performance in turf and pasture industries. This review provides insight into the various strategies reported in identifying antifungal activity from Epichloë endophytes and, where described, the associated antifungal metabolites responsible for the activity.
Collapse
Affiliation(s)
- Krishni Fernando
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (K.F.); (P.R.); (G.C.S.); (S.J.R.)
| |
Collapse
|
5
|
Barnett KL, Johnson SN, Facey SL, Gibson-Forty EVJ, Ochoa-Hueso R, Power SA. Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland. BMC Ecol Evol 2021; 21:145. [PMID: 34266378 PMCID: PMC8283849 DOI: 10.1186/s12862-021-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.
Collapse
Affiliation(s)
- Kirk L Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Sarah L Facey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Eleanor V J Gibson-Forty
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Raul Ochoa-Hueso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Biology, University of Cádiz, Avenida República Árabe Saharaui, 11510, Puerto Real, Cádiz, Spain
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
6
|
Sharma H, Rai AK, Dahiya D, Chettri R, Nigam PS. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS Microbiol 2021; 7:175-199. [PMID: 34250374 PMCID: PMC8255908 DOI: 10.3934/microbiol.2021012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Endophytes represent microorganisms residing within plant tissues without typically causing any adverse effect to the plants for considerable part of their life cycle and are primarily known for their beneficial role to their host-plant. These microorganisms can in vitro synthesize secondary metabolites similar to metabolites produced in vivo by their host plants. If microorganisms are isolated from certain plants, there is undoubtedly a strong possibility of obtaining beneficial endophytes strains producing host-specific secondary metabolites for their potential applications in sustainable agriculture, pharmaceuticals and other industrial sectors. Few products derived from endophytes are being used for cultivating resilient crops and developing non-toxic feeds for livestock. Our better understanding of the complex relationship between endophytes and their host will immensely improve the possibility to explore their unlimited functionalities. Successful production of host-secondary metabolites by endophytes at commercial scale might progressively eliminate our direct dependence on high-valued vulnerable plants, thus paving a viable way for utilizing plant resources in a sustainable way.
Collapse
Affiliation(s)
- Hemant Sharma
- Department of Botany, Sikkim University, 6th Mile Tadong, Gangtok, Sikkim, India
| | - Arun Kumar Rai
- Department of Botany, Sikkim University, 6th Mile Tadong, Gangtok, Sikkim, India
| | - Divakar Dahiya
- School of Human Sciences, London Metropolitan University, Holloway Road, London, UK
| | - Rajen Chettri
- Department of Botany, Sikkim Government Science College, Chakung, Sikkim, India
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
7
|
Fernando K, Reddy P, Hettiarachchige IK, Spangenberg GC, Rochfort SJ, Guthridge KM. Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes. Microorganisms 2020; 8:microorganisms8060955. [PMID: 32599897 PMCID: PMC7355949 DOI: 10.3390/microorganisms8060955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp. and NEA12 showed moderate inhibition against all three pathogens. Crude extracts from liquid cultures of NEA12 and NEA23 also inhibited growth of the phytopathogens Ceratobasidium sp. and Fusarium sp. and provided evidence that the compounds of interest are stable, constitutively expressed, and secreted. Comparative analysis of the in vitro and in planta metabolome of NEA12 and NEA23 using LCMS profile data revealed individual metabolites unique to each strain that are present in vitro and in planta. These compounds are the best candidates for the differential bioactivity observed for each strain. Novel endophyte strains show promise for endophyte-mediated control of phytopathogens impacting Lolium spp. pasture production and animal welfare.
Collapse
Affiliation(s)
- Krishni Fernando
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Priyanka Reddy
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Simone J. Rochfort
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; (K.F.); (P.R.); (I.K.H.); (G.C.S.); (S.J.R.)
- Correspondence: ; Tel.: +61390327062
| |
Collapse
|
8
|
Krauss J, Vikuk V, Young CA, Krischke M, Mueller MJ, Baerenfaller K. Epichloë Endophyte Infection rates and Alkaloid Content in Commercially Available Grass Seed Mixtures in Europe. Microorganisms 2020; 8:microorganisms8040498. [PMID: 32244510 PMCID: PMC7232243 DOI: 10.3390/microorganisms8040498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 12/04/2022] Open
Abstract
Fungal endophytes of the genus Epichloë live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichloë infected grasses, the inclusion of Epichloë in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichloë infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichloë endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichloë infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichloë festucae var. lolii infecting Lolium perenne. As Epichloë infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichloë infection status or avoiding Epichloë infected seed mixtures.
Collapse
Affiliation(s)
- Jochen Krauss
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
- Correspondence: ; Tel.: +49(0)931-318-2382
| | - Veronika Vikuk
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | | | - Markus Krischke
- Department of Pharmaceutical Biology, Metabolomics Core Unit, University of Würzburg, 97082 Würzburg, Germany, (M.J.M.)
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Metabolomics Core Unit, University of Würzburg, 97082 Würzburg, Germany, (M.J.M.)
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, and Swiss Institute of Bioinformatics (SIB), 7265 Davos, Switzerland;
| |
Collapse
|
9
|
Novel bioassay to assess antibiotic effects of fungal endophytes on aphids. PLoS One 2020; 15:e0228813. [PMID: 32040957 PMCID: PMC7010463 DOI: 10.1371/journal.pone.0228813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
Perennial ryegrass is an important feed base for the dairy and livestock industries around the world. It is often infected with mutualistic fungal endophytes that confer protection to the plant against biotic and abiotic stresses. Bioassays that test their antibiotic effect on invertebrates are varied and range from excised leaves to whole plants. The aim of this study was to design and validate a "high-throughput" in-planta bioassay using 7-day-old seedlings confined in small cups, allowing for rapid assessments of aphid life history to be made while maintaining high replication and treatment numbers. Antibiosis was evaluated on the foliar and the root aphid species; Diuraphis noxia (Mordvilko) and Aploneura lentisci (Passerini) feeding on a range of perennial ryegrass-Epichloë festucae var. Lolii endophyte symbiota. As expected, both D. noxia and A. lentisci reared on endophyte-infected plants showed negatively affected life history traits by comparison to non-infected plants. Both species exhibited the highest mortality at the nymphal stage with an average total mortality across all endophyte treatments of 91% and 89% for D. noxia and A. lentisci respectively. Fecundity decreased significantly on all endophyte treatments with an average total reduction of 18% and 16% for D. noxia and A. lentisci respectively by comparison to non-infected plants. Overall, the bioassay proved to be a rapid method of evaluating the insecticidal activity of perennial ryegrass-endophyte symbiota on aphids (nymph mortality could be assessed in as little as 24 and 48 hours for D. noxia and A. lentisci respectively). This rapid and simple approach can be used to benchmark novel grass-endophyte symbiota on a range of aphid species that feed on leaves of plants, however we would caution that it may not be suitable for the assessment of root-feeding aphids, as this species exhibited relatively high mortality on the control as well.
Collapse
|
10
|
Ludlow EJ, Vassiliadis S, Ekanayake PN, Hettiarachchige IK, Reddy P, Sawbridge TI, Rochfort SJ, Spangenberg GC, Guthridge KM. Analysis of the Indole Diterpene Gene Cluster for Biosynthesis of the Epoxy-Janthitrems in Epichloë Endophytes. Microorganisms 2019; 7:microorganisms7110560. [PMID: 31766147 PMCID: PMC6921081 DOI: 10.3390/microorganisms7110560] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023] Open
Abstract
Epoxy-janthitrems are a class of indole diterpenes with structural similarity to lolitrem B. Two taxa of asexual Epichloë endophytes have been reported to produce epoxy-janthitrems, LpTG-3 (Lolium perenne Taxonomic Group 3; e.g., NEA12) and LpTG-4 (e.g., E1). Epichloë epoxy-janthitrems are not well understood, the biosynthetic pathway and associated gene complement have not been described and while the literature suggests they are associated with superior protection against pasture insect pests and are tremorgenic in grazing mammals, these properties have not been confirmed using isolated and purified compounds. Whole genome sequence analysis was used to identify candidate genes for epoxy-janthitrem biosynthesis that are unique to epoxy-janthitrem producing strains of Epichloë. A gene, jtmD, was identified with homology to aromatic prenyl transferases involved in synthesis of indole diterpenes. The location of the epoxy-janthitrem biosynthesis gene cluster (JTM locus) was determined in the assembled nuclear genomes of NEA12 and E1. The JTM locus contains cluster 1 and cluster 2 of the lolitrem B biosynthesis gene cluster (LTM locus), as well as four genes jtmD, jtmO, jtm01, and jtm02 that are unique to Epichloë spp. that produce epoxy-janthitrems. Expression of each of the genes identified was confirmed using transcriptome analysis of perennial ryegrass-NEA12 and perennial ryegrass-E1 symbiota. Sequence analysis confirmed the genes are functionally similar to those involved in biosynthesis of related indole diterpene compounds. RNAi silencing of jtmD and in planta assessment in host-endophyte associations confirms the role of jtmD in epoxy-janthitrem production. Using LCMS/MS technologies, a biosynthetic pathway for the production of epoxy-janthitrems I-IV in Epichloë endophytes is proposed.
Collapse
Affiliation(s)
- Emma J. Ludlow
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Simone Vassiliadis
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Piyumi N. Ekanayake
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Inoka K. Hettiarachchige
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Simone J. Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Kathryn M. Guthridge
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; (E.J.L.); (S.V.); (P.N.E.); (I.K.H.); (P.R.); (T.I.S.); (S.J.R.); (G.C.S.)
- Correspondence:
| |
Collapse
|
11
|
Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. FRONTIERS IN PLANT SCIENCE 2018; 9:24. [PMID: 29410675 PMCID: PMC5787091 DOI: 10.3389/fpls.2018.00024] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/08/2018] [Indexed: 05/19/2023]
Abstract
Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdul L. Khan
- Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sajjad Asaf
- Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|