1
|
Abtahi M, Mirlohi A, Zare S. Selection of promising lines for yield and quality traits in advanced segregating generation of linseed. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mozhgan Abtahi
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| | - Sara Zare
- Department of Agronomy and Plant Breeding, College of Agriculture Isfahan University of Technology Isfahan Iran
| |
Collapse
|
2
|
Ding G, Hu B, Zhou Y, Yang W, Zhao M, Xie J, Zhang F. Development and Characterization of Chromosome Segment Substitution Lines Derived from Oryza rufipogon in the Background of the Oryza sativa indica Restorer Line R974. Genes (Basel) 2022; 13:genes13050735. [PMID: 35627119 PMCID: PMC9140843 DOI: 10.3390/genes13050735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Dongxiang wild rice (DXWR) (O. rufipogon Griff.), which has the northernmost worldwide distribution of a wild rice species, is a valuable genetic resource with respect to improving stress tolerance in cultivated rice (Oryza sativa L.). In the three-line hybrid rice breeding system, restorer lines play important roles in enhancing the tolerance of hybrid rice. However, restorer lines have yet to be used as a genomic background for development of substitution lines carrying DXWR chromosome segments. We developed a set of 84 chromosome segment substitution lines (CSSLs) from a donor parent DXWR × recurrent parent restorer line R974 (Oryza sativa indica) cross. On average, each CSSL carried 6.27 introgressed homozygous segments, with 93.37% total genome coverage. Using these CSSLs, we identified a single QTL, qDYST-1, associated with salt stress tolerance on chromosome 3. Furthermore, five CSSLs showing strong salt stress tolerance were subjected to whole-genome single-nucleotide polymorphism chip analyses, during which we detected a common substitution segment containing qDYST-1 in all five CSSLs, thereby implying the validity and efficacy of qDYST-1. These novel CSSLs could make a significant contribution to detecting valuable DXWR QTLs, and provide important germplasm resources for breeding novel restorer lines for use in hybrid rice breeding systems.
Collapse
Affiliation(s)
- Gumu Ding
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Biaolin Hu
- Rice National Engineering Laboratory, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330022, China;
| | - Yi Zhou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Wanling Yang
- Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China;
| | - Minmin Zhao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
| | - Jiankun Xie
- Jiangxi Provincial Key Laboratory of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China;
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.D.); (Y.Z.); (M.Z.)
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
3
|
Lu X, Zhou Z, Yuan Z, Zhang C, Hao Z, Wang Z, Li M, Zhang D, Yong H, Han J, Li X, Weng J. Genetic Dissection of the General Combining Ability of Yield-Related Traits in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:788. [PMID: 32793248 PMCID: PMC7387702 DOI: 10.3389/fpls.2020.00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/27/2023]
Abstract
Maize yield components including row number, kernel number per row, kernel thickness, kernel width, kernel length, 100-kernel weight, and volume weight affect grain yield directly. Previous studies mainly focused on dissecting the genetic basis of per se performances for yield-related traits, but the genetic basis of general combining ability (GCA) for these traits is still unclear. In the present study, 328 RILs were crossed as males to two testers according to the NCII mating design, resulting in a hybrid panel composed of 656 hybrids. Both the hybrids and parental lines were evaluated in four environments in 2015 and 2016. Correlation analysis showed the performances of GCA effects were significantly correlated to the per se performances of RILs for all yield-related traits (0.17 ≤ r ≤ 0.64, P > 0.01). Only 17 of 95 QTL could be detected for both per se performances of RILs and GCA effects for eight yield-related traits. The QTL qKN7-1 and qHKW1-3, which could explain more than 10% of the variation in the GCA effects of KN and HKW, were also detected for per se performances for the traits. The pleiotropic loci qRN3-1 and qRN6, which together explained 14.92% of the observed variation in GCA effects for RN, were associated with the GCA effects of KW and HKW, but not with per se performances for these traits. In contrast, Incw1, which was related to seed weight in maize, was mapped to the region surrounding MK2567 at the qHKW5-2 locus, but no GCA effect was detected. The QTL identified in present study for per se performances and corresponding GCA effects for yield-related traits might be useful for maize hybrid breeding.
Collapse
Affiliation(s)
- Xin Lu
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohui Yuan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chaoshu Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhai Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zheng W, Ma Z, Zhao M, Xiao M, Zhao J, Wang C, Gao H, Bai Y, Wang H, Sui G. Research and Development Strategies for Hybrid japonica Rice. RICE (NEW YORK, N.Y.) 2020; 13:36. [PMID: 32514748 PMCID: PMC7280405 DOI: 10.1186/s12284-020-00398-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/28/2020] [Indexed: 06/01/2023]
Abstract
The utilization of heterosis has resulted in significant breakthroughs in rice breeding. However, the development of hybrid japonica has been slow in comparison with that of hybrid indica. The present review explores the history and current status of hybrid japonica breeding. With the creation of japonica cytoplasmic male sterility and photo-thermo-sensitive genic male sterile lines, both three-line and two-line systems of hybrid rice have been created, and a series of hybrid japonica rice varieties have been developed and cultivated widely. At the same time, some progress has been made in genetic research of molecular mechanism for heterosis and QTL mapping for traits such as fertility, stigma exposure and flower time. In addition, genomics and transcriptome have been widely used in the research of hybrid rice, which provides a strong support for its development. Although the research on hybrid japonica has made many advances, there are still some restrictive problems. Based on the research and production of hybrid japonica rice, the prospect and development strategies of hybrid japonica rice are analyzed.
Collapse
Affiliation(s)
- Wenjing Zheng
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Zuobin Ma
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Mingzhu Zhao
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Minggang Xiao
- Heilongjiang Academy of Agricultural Sciences, Haerbin, 1550086, China
| | - Jiaming Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Changhua Wang
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Hong Gao
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Yuanjun Bai
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110000, China
| | - Hui Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Guomin Sui
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| |
Collapse
|
5
|
Eltahawy MS, Ali N, Zaid IU, Li D, Abdulmajid D, Bux L, Wang H, Hong D. Association analysis between constructed SNPLDBs and GCA effects of 9 quality-related traits in parents of hybrid rice (Oryza sativa L.). BMC Genomics 2020; 21:31. [PMID: 31918652 PMCID: PMC6953305 DOI: 10.1186/s12864-019-6428-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The general combining ability (GCA) of parents in hybrid rice affects not only heterotic level of grain yield and other important agronomic traits, but also performance of grain quality traits of F2 bulk population which is the commodity consumed by humans. In order to make GCA improvement for quality traits in parents of hybrid rice by molecular marker assisted selection feasible, genome-wide GCA loci for quality traits in parents were detected through association analysis between the effects of GCA and constructed single nucleotide polymorphism linkage disequilibrium blocks (SNPLDBs), by using unhusked rice grains harvested from F1 plants of 48 crosses of Indica rice and 78 crosses of Japonica rice. GCA-SNPLDBs association analysis. RESULTS Among the 8 CMS and 6 restorer lines of indica rice subspecies, CMS lines Zhenpin A, Zhenshan97 A, and 257A, and restorers Kanghui98, Minghui63 and Yanhui559 were recognized as good general combiners based on their GCA effect values for the 9 quality traits (brown rice rate, milled rice rate, head rice rate, percentage of chalky grains, chalky area size, chalkiness degree, gelatinization temperature, gel consistency and amylose content). Among the 13 CMS and 6 restorer lines of japonica rice subspecies, CMS 863A, 6427A and Xu 2A, and restorers C418, Ninghui8hao and Yunhui4hao showed elite GCA effect values for the 9 traits. GCA-SNPLDB association analysis revealed 39 significant SNPLDB loci associated with the GCA of the 9 quality-related traits, and the numbers of SNPLDB loci located on chromosome 1, 2, 3, 4, 5, 8, 9, 11 and 12 were 1, 4, 3, 9, 6, 5, 5, 4 and 2, respectively. Number of superior GCA alleles for the 9 traits among the 33 parents ranged from 1 to 26. CONCLUSIONS Thirty-nine significant SNPLDBs loci were identified associated with the GCA of 9 quality-related traits, and the superior SNPLDB alleles could be used to improve the GCA of parents for the traits in the future by molecular marker assisted selection. The genetic basis of trait GCA in parents is different from that of trait itself.
Collapse
Affiliation(s)
- Moaz S Eltahawy
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.,Agronomy Department, Faculty of Agriculture, Zagazig University, Sharqia, 44519, Egypt
| | - Nour Ali
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.,Laboratory of Crop Genetics and Germplasm Enhancement, Field Crops Research Department, Agricultural Faculty, Damascus University, Damascus, Syria
| | - Imdad U Zaid
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dalu Li
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dina Abdulmajid
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.,Rice Research and Training Centre, Field Crops Research Institute, Agricultural Research Centre, Kafr El-Sheikh, 33717, Egypt
| | - Lal Bux
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Wang
- Nanjing Agricultural University, Nanjing, 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Delin Hong
- Nanjing Agricultural University, Nanjing, 210095, China. .,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Ullah Zaid I, Tang W, He J, Ullah Khan S, Hong D. Association analysis uncovers the genetic basis of general combining ability of 11 yield-related traits in parents of hybrid rice. AOB PLANTS 2019; 11:ply077. [PMID: 30697406 PMCID: PMC6343818 DOI: 10.1093/aobpla/ply077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
Association analysis between constructed single nucleotide polymorphism linkage disequilibrium blocks (SNPLDBs) and general combining ability (GCA) effects is a novel approach to uncover the genetic basis of GCA within the sequence genomes of parents of hybrid rice. Here, we calculated the GCA effect values of 33 parents of hybrid rice and sequenced them to identify genome-wide single nucleotide polymorphisms (SNPs). In total, 64.6 % of the uniquely mapped paired-end short reads revealed a final total of 291 959 SNPs between the 33 parental genomes and the Nipponbare reference genome. The identified SNPs were non-randomly distributed among all chromosomes of rice, whereas one-fourth of the SNPs were situated in the exonic regions with 16 % being non-synonymous. Further, the identified SNPs were merged and optimized for construction of 2612 SNPLDB markers, using linkage disequilibrium information. The single-factor analysis of variance-based association method between the constructed SNPLDB markers and GCA effects values detected 99 significant SNPLDBs for GCA of 11 yield-related traits. The associated SNPLDB markers explained 26.4 % of phenotypic variations with traits, on average. We mined 50 favourable GCA alleles at the associated SNPLDBs regions, distributed across the 33 parental genomes. The parental genomes possessed a small number of favourable GCA alleles for studied traits, with the exception of days to heading and plant height. Our results suggest that the identified GCA alleles could be used to improve the GCA performance of parents of hybrid rice through optimal crossing design. Moreover, favourable GCA alleles should be incorporated in the parental genomes through marker-assisted selection experiments, and the parental lines carrying more alleles could be utilized in breeding as superior parents for developing rice hybrids of desirable characteristics.
Collapse
Affiliation(s)
- Imdad Ullah Zaid
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 286 Huaizhong Rd, Shijiazhuang, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Sana Ullah Khan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | - Delin Hong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Fujino K, Hirayama Y, Obara M, Ikegaya T. Colocalization of QTLs for hull-cracked rice and grain size in elite rice varieties in Japan. BREEDING SCIENCE 2018; 68:449-454. [PMID: 30369819 PMCID: PMC6198905 DOI: 10.1270/jsbbs.18024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 05/20/2023]
Abstract
The control of insects that consume cereal grains is important for the production and storage of grains. Hull-cracked rice, which has splits in the hull, becomes more susceptible to insects both in the paddy field and during storage. The development of varieties with a low frequency of hull-cracked rice is the most economical and effective strategy to avoid insect damage and the environmental risks from agricultural chemical entering rice grains. In this study, we identified that QTLs for the frequency of hull-cracked rice and for grain width are located on the same chromosome using recombinant inbred lines derived from a cross between the elite rice varieties in Hokkaido, Japan, which are from the same pedigree and are genetically closely related. These QTLs were detected close to different molecular markers, which were separated by 1,101,675 bp, on chromosome 5 in the reference Nipponbare genome. In addition, low coefficient values of the phenotype were found between hull-cracked rice and grain size. These results suggested that the ratio of hull-cracked rice is independent of grain size. Using these QTLs, new varieties with low hull-cracked rice could be developed regardless of grain size.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
- Corresponding author (e-mail: )
| | - Yuji Hirayama
- Rice breeding group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization,
Pippu, Hokkaido 078-0397,
Japan
| | - Mari Obara
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|