1
|
Han C, Zhao J, Chen C, Li Y, Shi L. Subchronic Toxicity Test of Transgenic Herbicide-Tolerant Soybean ZH10-6 in Rats. J Appl Toxicol 2025. [PMID: 39988325 DOI: 10.1002/jat.4766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
The herbicide-tolerant soybean ZH10-6 was developed by modifying the Zhonghuang 10 (ZH10) variety with the G2-EPSPS and GAT genes, conferring resistance to glyphosate. This study aimed to assess the potential health effects of ZH10-6 in Sprague-Dawley rats through a 90-day subchronic toxicity test. Seven groups of rats (n = 10/sex/group) were fed a commercial AIN93G diet or diets containing 7.5%, 15%, or 30% ZH10-6 or ZH10 soybeans. General behavior, body weight, and food consumption were monitored weekly. At the end of the study, clinical pathology, including hematology, serum chemistry, urinalysis, and histopathology, were conducted. Throughout the study, all rats remained healthy and showed no abnormal clinical signs. Although some coagulation and serum biochemistry parameters showed statistical differences between groups, all values fell within the historical control ranges and were considered normal biological variability rather than treatment-related effects. The results indicate that ZH10-6 soybean consumption did not cause any adverse health effects in rats. These findings suggest that ZH10-6 is as safe as its nontransgenic parental variety, ZH10, with no evidence of toxicity after 90 days of exposure.
Collapse
Affiliation(s)
- Chao Han
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - JinPeng Zhao
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Li
- Key Laboratory of Trace Element Nutrition of National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - LiLi Shi
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Sang S, Wang Y, Yao G, Ma T, Sun X, Zhang Y, Su N, Tan X, Abbas HMK, Ji S, Zaman QU. A Critical Review of Conventional and Modern Approaches to Develop Herbicide-Resistance in Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14254. [PMID: 38499939 DOI: 10.1111/ppl.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.
Collapse
Affiliation(s)
- Shifei Sang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yanan Wang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Guoqin Yao
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Tengyun Ma
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaohan Sun
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yijing Zhang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Nan Su
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agricultural and Forestry, Jiangsu Province, P. R. China
| | | | - Shengdong Ji
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
- College of Tropical Crops and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Zhang Q, Liang M, Zeng J, Yang C, Qin J, Qiang W, Lan X, Chen M, Lin M, Liao Z. Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab Eng 2022; 72:237-246. [PMID: 35390492 DOI: 10.1016/j.ymben.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Atropa belladonna is an important industrial crop for producing anticholinergic tropane alkaloids (TAs). Using glyphosate as selection pressure, transgenic homozygous plants of A. belladonna are generated, in which a novel calmodulin gene (AbCaM1) and a reported EPSPS gene (G2-EPSPS) are co-overexpressed. AbCaM1 is highly expressed in secondary roots of A. belladonna and has calcium-binding activity. Three transgenic homozygous lines were generated and their glyphosate tolerance and TAs' production were evaluated in the field. Transgenic homozygous lines produced TAs at much higher levels than wild-type plants. In the leaves of T2GC02, T2GC05, and T2GC06, the hyoscyamine content was 8.95-, 10.61-, and 9.96 mg/g DW, the scopolamine content was 1.34-, 1.50- and 0.86 mg/g DW, respectively. Wild-type plants of A. belladonna produced hyoscyamine and scopolamine respectively at the levels of 2.45 mg/g DW and 0.30 mg/g DW in leaves. Gene expression analysis indicated that AbCaM1 significantly up-regulated seven key TA biosynthesis genes. Transgenic homozygous lines could tolerate a commercial recommended dose of glyphosate in the field. In summary, new varieties of A. belladonna not only produce pharmaceutical TAs at high levels but tolerate glyphosate, facilitating industrial production of TAs and weed management at a much lower cost.
Collapse
Affiliation(s)
- Qiaozhuo Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengjiao Liang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jianbo Qin
- Chongqing Academy of Science and Technology, Chongqing, 401123, China
| | - Wei Qiang
- College of Life Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Xizang Agricultural and Husbandry College, Nyingchi of Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Min Lin
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Zhihua Liao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China; Chongqing Academy of Science and Technology, Chongqing, 401123, China.
| |
Collapse
|
4
|
CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 2021; 48:3605-3615. [PMID: 33950408 DOI: 10.1007/s11033-021-06375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas) technology is an effective tool for site-specific genome editing, used to precisely induce mutagenesis in different plant species including rice. Salinity is one of the most stressful environmental constraints affecting agricultural productivity worldwide. As plant adaptation to salinity stress is under polygenic control therefore, 51 rice genes have been identified that play crucial role in response to salinity. This review offers an exclusive overview of genes identified in rice genome for salinity stress tolerance. This will provide an idea to produce rice varieties with enhanced salt tolerance using the potentially efficient CRISPR-Cas technology. Several undesirable off-target effects of CRISPR-Cas technology and their possible solutions have also been highlighted.
Collapse
|
5
|
Wang XJ, Jiao Y, Ma S, Yang JT, Wang ZX. Whole-Genome Sequencing: An Effective Strategy for Insertion Information Analysis of Foreign Genes in Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:573871. [PMID: 33335534 PMCID: PMC7736074 DOI: 10.3389/fpls.2020.573871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Molecular characterization is a key step in the risk assessment of genetically modified organisms (GMOs) for regulatory approval. Herein, we describe a method for analyzing copy number, insertion loci, and flanking sequences through whole-genome sequencing (WGS) and bioinformatics. Comprehensive molecular characterization of G2-6 transgenic rice was performed using this pipeline. The results showed that one copy of the foreign gene was inserted into rice chromosome 8. There was no vector backbone insertion but an unexpected insertion and DNA rearrangement at the 3' end of the T-DNA. We also obtained the 5' and 3' flanking sequences of the T-DNA. Our results suggested that the use of a combination of WGS and bioinformatics is an effective strategy for the molecular characterization of GMOs.
Collapse
Affiliation(s)
- Xu-jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Yue Jiao
- Development Center for Science and Technology/MARA, Beijing, China
| | - Shuo Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Jiang-tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| | - Zhi-xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences/MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing China
| |
Collapse
|
6
|
Fonseca ECM, da Costa KS, Lameira J, Alves CN, Lima AH. Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate. RSC Adv 2020; 10:44352-44360. [PMID: 35517162 PMCID: PMC9058485 DOI: 10.1039/d0ra09061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/04/2020] [Indexed: 01/09/2023] Open
Abstract
The shikimate pathway enzyme 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) catalyzes the reaction involved in the production of amino acids essential for plant growth and survival. Thus, EPSPS is the main target of various herbicides, including glyphosate, a broad-spectrum herbicide that acts as a competitive inhibitor of phosphoenolpyruvate (PEP), which is the natural substrate of EPSPS. However, punctual mutations in the EPSPS gene have led to glyphosate resistance in some plants. Here, we investigated the mechanism of EPSPS resistance to glyphosate in mutants of two weed species, Conyza sumatrensis (mutant, P106T) and Eleusine indica (mutant, T102I/P106S), both of which have an economic impact on industrial crops. Molecular dynamics (MD) simulations and binding free energy calculations revealed the influence of the mutations on the affinity of glyphosate in the PEP-binding site. The amino acid residues of the EPSPS protein in both species involved in glyphosate resistance were elucidated as well as other residues that could be useful for protein engineering. In addition, during MD simulations, we identified conformational changes in glyphosate when complexed with resistant EPSPS, related to loss of herbicide activity and binding affinity. Our computational findings are consistent with previous experimental results and clarify the inhibitory activity of glyphosate as well as the structural target-site resistance of EPSPS against glyphosate. Single or double EPSP synthase mutations lead glyphosate to undergo conformational changes that limit its inhibitory action.![]()
Collapse
Affiliation(s)
- Emily C. M. Fonseca
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - Kauê S. da Costa
- Instituto de Biodiversidade
- Universidade Federal do Oeste do Pará
- Santarém
- Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| |
Collapse
|
7
|
Wang XJ, Dong YF, Jin X, Yang JT, Wang ZX. The application of gene splitting technique for controlling transgene flow in rice. Transgenic Res 2019; 29:69-80. [PMID: 31654191 DOI: 10.1007/s11248-019-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Controlling transgene flow in China is important, as this country is part of the center of origin of rice. A gene-splitting technique based on intein-mediated trans-splicing represents a new strategy for controlling transgene flow via biological measures. In this study, the G2-aroA gene which provides glyphosate tolerance was split into an N-terminal and a C-terminal region, which were then fused to intein N and intein C of the Ssp DnaE intein, ultimately forming EPSPSn:In and Ic:EPSPSc fusion genes, respectively. These fusion genes were subsequently transformed into the rice cultivar Zhonghua 11 via the Agrobacterium-mediated method. The two split gene fragments were then introduced into the same rice genome by genetic crossings. Glyphosate tolerance analysis revealed that the functional target protein was reconstituted by Ssp DnaE intein-mediated trans-splicing and that the resultant hybrid rice was glyphosate tolerant. The reassembly efficiency of the split gene fragments ranged from 67 to 91% at the molecular level, and 100% of the hybrid F1 progeny were glyphosate tolerant. Transgene flow experiments showed that when the split gene fragments are inserted into homologous chromosomes, the gene-splitting technique can completely avoid the escape of the target trait to the environment. This report is the first on the reassembly efficiency and effectiveness of transgene flow containment via gene splitting in rice. This study provides not only a new biological strategy for controlling rice transgene flow but also a new method for cultivating hybrid transgenic rice.
Collapse
Affiliation(s)
- Xu-Jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Yu-Feng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Xi Jin
- Department of Biochemistry, Baoding University, Baoding, 071000, China
| | - Jiang-Tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Zhi-Xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China.
| |
Collapse
|
8
|
Ortega JL, Rajapakse W, Bagga S, Apodaca K, Lucero Y, Sengupta-Gopalan C. An intragenic approach to confer glyphosate resistance in chile (Capsicum annuum) by introducing an in vitro mutagenized chile EPSPS gene encoding for a glyphosate resistant EPSPS protein. PLoS One 2018; 13:e0194666. [PMID: 29649228 PMCID: PMC5896900 DOI: 10.1371/journal.pone.0194666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 11/24/2022] Open
Abstract
Chile pepper (Capsicum annuum) is an important high valued crop worldwide, and when grown on a large scale has problems with weeds. One important herbicide used is glyphosate. Glyphosate inactivates the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme in the synthesis of aromatic amino acids. A transgenic approach towards making glyphosate resistant plants, entails introducing copies of a gene encoding for glyphosate-resistant EPSPS enzyme into the plant. The main objective of our work was to use an intragenic approach to confer resistance to glyphosate in chile which would require using only chile genes for transformation including the selectable marker. Tobacco was used as the transgenic system to identify different gene constructs that would allow for the development of the intragenic system for chile, since chile transformation is inefficient. An EPSPS gene was isolated from chile and mutagenized to introduce substitutions that are known to make the encoded enzyme resistant to glyphosate. The promoter for EPSPS gene was isolated from chile and the mutagenized chile EPSPS cDNA was engineered behind both the CaMV35S promoter and the EPSPS promoter. The leaves from the transformants were checked for resistance to glyphosate using a cut leaf assay. In tobacco, though both gene constructs exhibited some degree of resistance to glyphosate, the construct with the CaMV35S promoter was more effective and as such chile was transformed with this gene construct. The chile transformants showed resistance to low concentrations of glyphosate. Furthermore, preliminary studies showed that the mutated EPSPS gene driven by the CaMV35S promoter could be used as a selectable marker for transformation. We have shown that an intragenic approach can be used to confer glyphosate-resistance in chile. However, we need a stronger chile promoter and a mutated chile gene that encodes for a more glyphosate resistant EPSPS protein.
Collapse
Affiliation(s)
- Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Wathsala Rajapakse
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Suman Bagga
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Kimberly Apodaca
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Yvonne Lucero
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|