1
|
Yu YX, Wang MQ, Fang ZJ, Li H, Gong JM. The Ammonium Transporter SpAMT1;2 Contributes to Nitrogen Utilisation and Cadmium Accumulation in the Hyperaccumulator Sedum Plumbizincicola. PLANT, CELL & ENVIRONMENT 2025; 48:2256-2266. [PMID: 39572913 DOI: 10.1111/pce.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 02/04/2025]
Abstract
Sedum plumbizincicola (Sp) is a cadmium (Cd) hyperaccumulator found specifically in abandoned ancient mines where N is regularly deficient while Cd presents in excess. How Sp got adapted to this unique habitat remains unknown. Here, we reported relative abundant presence of NH4 + in mine areas for Sp, and the isolation and functional characterisation of a putative NH4 + transporter gene AMT1;2, which is highly expressed in Sp roots and encodes a pH-dependent dual affinity ammonium uptake transporter. Compared to SaAMT1;2, the homologous gene in the nonhyperaccumulating control Sedum alfredii (Sa), SpAMT1;2 expression is much higher and not inhibited by Cd. Only eight amino acid sequence polymorphisms were observed between SpAMT1;2 and SaAMT1;2, and the in-vitro NH4 + uptake activity and subcellular localisation are identical between them with or without Cd stress. Moreover, in contrast in Sa, NH4 + uptake in Sp is not inhibited by Cd, and NH4 + at ambient level promotes Cd accumulation. These data suggest that SpAMT1;2 is likely an essential gene contributing to nitrogen nutrition and the interaction between NH4 +and Cd uptake in Sp, which might represent a novel N utilisation pathway evolved in mines for the hyperaccumulator Sp.
Collapse
Affiliation(s)
- Yan-Xuan Yu
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Qi Wang
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Jun Fang
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Li
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Ming Gong
- National Key Laboratory of Molecular Plant Genetics, Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Zhu X, Tu C, Zhou J, Yang S, Li Y, Wu L, Newman LA, Luo Y. Cadmium phytoextraction by Sedum alfredii and Sedum plumbizincicola: mechanisms, challenges and prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-9. [PMID: 39838584 DOI: 10.1080/15226514.2025.2451714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Phytoextraction using natural cadmium (Cd) hyperaccumulators, notably Sedum alfredii and Sedum plumbizincicola, represents an economical and efficient approach for soil Cd purification. However, achieving high phytoremediation efficiency necessitates a comprehensive understanding of the mechanisms underlying Cd tolerance and accumulation in these plants. This review summarizes key mechanisms, encompassing Cd activation in the rhizosphere, uptake and transport in the roots, translocation via the xylem, and Cd tolerance. Additionally, physical, chemical, and biological strategies for enhancing phytoremediation efficiency are overviewed and compared. Despite advancements, disparities persist between field and laboratory research, posing certain limitations to the application of natural hyperaccumulators for large-scale phytoextraction or specific soil types. To address these challenges, we propose combining novel hyperaccumulating-like biomaterials with intelligent agriculture to achieve large-scale precision phytoremediation. Furthermore, we aim to draw attention to strategies for enhancing the phytoextraction potential of non-hyperaccumulator plants with high biomass production and stimulate further research into phytoextraction-inducing substances.
Collapse
Affiliation(s)
- Xia Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiawen Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lee A Newman
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Y, Mo Y, Ren H, Wu X, Han L, Sun Z, Xu W. Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system. PLANTA 2024; 259:119. [PMID: 38594473 DOI: 10.1007/s00425-024-04393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
MAIN CONCLUSION S. plumbizincicola genetic transformation was optimized using a self-excision molecular-assisted transformation system by integrating the SpGRF4/SpGIF1 gene with XVE and Cre/loxP. Sedum plumbizincicola, despite being an excellent hyperaccumulator of cadmium and zinc with significant potential for soil pollution phytoremediation on farmland, has nonetheless trailed behind other major model plants in genetic transformation technology. In this study, different explants and SpGRF4-SpGIF1 genes were used to optimize the genetic transformation of S. plumbizincicola. We found that petiole and stem segments had higher genetic transformation efficiency than cluster buds. Overexpression of SpGRF4-SpGIF1 could significantly improve the genetic transformation efficiency and shorten the period of obtaining regenerated buds. However, molecular assistance with overexpression of SpGRF4-SpGIF1 leads to abnormal morphology, resulting in plant tissue enlargement and abnormal growth. Therefore, we combined SpGRF4-SpGIF1 with XVE and Cre/loxP to obtain DNA autocleavage transgenic plants induced by estradiol, thereby ensuring normal growth in transgenic plants. This study optimized the S. plumbizincicola genetic transformation system, improved the efficiency of genetic transformation, and established a self-excision molecular-assisted transformation system. This work also established the basis for studying S. plumbizincicola gene function, and for S. plumbizincicola breeding and germplasm innovation.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongxu Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotong Wu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Ma T, Yan C, Zhang S, Liang D, Mao C, Zhang C. High-quality genome assembly and genetic transformation system of Lasiodiplodia theobromae strain LTTK16-3, a fungal pathogen of Chinese hickory. Microbiol Spectr 2024; 12:e0331123. [PMID: 38349153 PMCID: PMC10913528 DOI: 10.1128/spectrum.03311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Lasiodiplodia theobromae, as one of the causative agents associated with Chinese hickory trunk cankers, has caused huge economic losses to the Chinese hickory industry. Although the biological characteristics of this pathogen and the occurrence pattern of this disease have been well studied, few studies have addressed the related mechanisms due to the poor molecular and genetic study basis of this fungus. In this study, we sequenced and assembled L. theobromae strain LTTK16-3, isolated from a Chinese hickory tree (cultivar of Linan) in Linan, Zhejiang province, China. Phylogenetic analysis and comparative genomics analysis presented crucial cues in the prediction of LTTK16-3, which shared similar regulatory mechanisms of transcription, DNA replication, and DNA damage response with the other four Chinese hickory trunk canker-associated Botryosphaeria strains including, Botryosphaeria dothidea, Botryosphaeria fabicerciana, Botryosphaeria qingyuanensis, and Botryosphaeria corticis. Moreover, it contained 18 strain-specific protein clusters (not conserved in the other L. theobromae strains, AM2As and CITRA15), with potential roles in specific host-pathogen interactions during the Chinese hickory infection. Additionally, an efficient system for L. theobromae protoplast preparation and polyethylene glycol (PEG) -mediated genetic transformation was firstly established as the foundation for its future mechanisms study. Collectively, the high-quality genome data and the efficient transformation system of L. theobromae here set up the possibility of targeted molecular improvements for Chinese hickory canker control.IMPORTANCEFungi with disparate genomic features are physiologically diverse, possessing species-specific survival strategies and environmental adaptation mechanisms. The high-quality genome data and related molecular genetic studies are the basis for revealing the mechanisms behind the physiological traits that are responsible for their environmental fitness. In this study, we sequenced and assembled the LTTK16-3 strain, the genome of Lasiodiplodia theobromae first obtained from a diseased Chinese hickory tree (cultivar of Linan) in Linan, Zhejiang province, China. Further phylogenetic analysis and comparative genomics analysis provide crucial cues in the prediction of the proteins with potential roles in specific host-pathogen interactions during the Chinese hickory infection. An efficient PEG-mediated genetic transformation system of L. theobromae was established as the foundation for the future mechanisms exploration. The above genetic information and tools set up valuable clues to study L. theobromae pathogenesis and assist in Chinese hickory canker control.
Collapse
Affiliation(s)
- Tianling Ma
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chenyi Yan
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Shuya Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Dong Liang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chengxin Mao
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou, China
| |
Collapse
|
5
|
Han TL, Tang TW, Zhang PH, Liu M, Zhao J, Peng JS, Meng S. Cloning and Functional Characterization of SpZIP2. Genes (Basel) 2022; 13:2395. [PMID: 36553665 PMCID: PMC9778510 DOI: 10.3390/genes13122395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like proteins (ZIP) are key players involved in the accumulation of cadmium (Cd) and Zn in plants. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Crassulaceae Cd/Zn hyperaccumulator found in China, but the role of ZIPs in S. plumbizincicola remains largely unexplored. Here, we identified 12 members of ZIP family genes by transcriptome analysis in S. plumbizincicola and cloned the SpZIP2 gene with functional analysis. The expression of SpZIP2 in roots was higher than that in the shoots, and Cd stress significantly decreased its expression in the roots but increased its expression in leaves. Protein sequence characteristics and structural analysis showed that the content of alanine and leucine residues in the SpZIP2 sequence was higher than other residues, and several serine, threonine and tyrosine sites can be phosphorylated. Transmembrane domain analysis showed that SpZIP2 has the classic eight transmembrane regions. The evolutionary analysis found that SpZIP2 is closely related to OsZIP2, followed by AtZIP11, OsZIP1 and AtZIP2. Sequence alignment showed that most of the conserved sequences among these members were located in the transmembrane regions. A further metal sensitivity assay using yeast mutant Δyap1 showed that the expression of SpZIP2 increased the sensitivity of the transformants to Cd but failed to change the resistance to Zn. The subsequent ion content determination showed that the expression of SpZIP2 increased the accumulation of Cd in yeast. Subcellular localization showed that SpZIP2 was localized to membrane systems, including the plasma membrane and endoplasmic reticulum. The above results indicate that ZIP member SpZIP2 participates in the uptake and accumulation of Cd into cells and might contribute to Cd hyperaccumulation in S. plumbizincicola.
Collapse
Affiliation(s)
- Tian-Long Han
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ting-Wei Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Pei-Hong Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Min Liu
- Xiaoxiang College, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Shi Peng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuan Meng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Changsha 410128, China
| |
Collapse
|
6
|
Sun L, Xue C, Guo C, Jia C, Yuan H, Pan X, Tai P. Maintenance of grafting reducing cadmium accumulation in soybean (Glycinemax) is mediated by DNA methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157488. [PMID: 35870595 DOI: 10.1016/j.scitotenv.2022.157488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution in farmland soil increases the probability of wastage of land resources and compromised food safety. Grafting can change the absorption rates of elements in crops; however, there are few studies on grafting in bulk grain and cash crops. In this study, Glycine max was used as a scion and Luffa aegyptiaca as a rootstock for grafting experiments. The changes in total sulfur and Cd content in the leaves and grains of grafted species were determined for three consecutive generations, and the gene expression and DNA methylation status of the leaves were analyzed. The results show that grafting significantly reduced the total sulfur and Cd content in soybean leaves and grains; the Cd content in soybean leaves and grains decreased by >50 %. The plant's primary sulfur metabolism pathway was not significantly affected. Glucosinolates and DNA methylation may play important roles in reducing total sulfur and Cd accumulation. Notably, low sulfur and low Cd traits can be maintained over two generations. Our study establishes that grafting can reduce the total sulfur and Cd content in soybean, and these traits can be inherited. In summary, grafting technology can be used to prevent soybean from accumulating Cd in farmland soil. This provides a theoretical basis for grafting to cultivate crops with low Cd accumulation.
Collapse
Affiliation(s)
- Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Honghong Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiangwen Pan
- Key Laboratory of Molecular Breeding and Design, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
7
|
Zhu Y, Qiu W, Li Y, Tan J, Han X, Wu L, Jiang Y, Deng Z, Wu C, Zhuo R. Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress. CHEMOSPHERE 2022; 287:132302. [PMID: 34563781 DOI: 10.1016/j.chemosphere.2021.132302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mechanism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Forestry Faculty, Nanjing Forestry University, Nanjing, 210037, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Yuhong Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang, 311400, PR China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China.
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, 310021, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China.
| |
Collapse
|
8
|
Peng JS, Guan YH, Lin XJ, Xu XJ, Xiao L, Wang HH, Meng S. Comparative understanding of metal hyperaccumulation in plants: a mini-review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1599-1607. [PMID: 32060864 DOI: 10.1007/s10653-020-00533-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/29/2020] [Indexed: 05/14/2023]
Abstract
Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.
Collapse
Affiliation(s)
- Jia-Shi Peng
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Yu-Hao Guan
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xian-Jing Lin
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiao-Jing Xu
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Lu Xiao
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Hai-Hua Wang
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
9
|
Chandra S, Toppo A. Antioxidant and antiacetylcholinestrase studies of In vitro regenerated and transformed hairy roots of Ocimum sanctum (L.). Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_539_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Chen S, Yu M, Li H, Wang Y, Lu Z, Zhang Y, Liu M, Qiao G, Wu L, Han X, Zhuo R. SaHsfA4c From Sedum alfredii Hance Enhances Cadmium Tolerance by Regulating ROS-Scavenger Activities and Heat Shock Proteins Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:142. [PMID: 32184794 PMCID: PMC7058639 DOI: 10.3389/fpls.2020.00142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/29/2020] [Indexed: 05/03/2023]
Abstract
The heat shock transcription factor (Hsf) family, an important member in plant stress response, affects cadmium (Cd) tolerance in plants. In this study, we identified and functionally characterized a transcript of the Hsf A4 subgroup from Sedum alfredii. Designated as SaHsfA4c, the open reading frame was 1,302 bp long and encoded a putative protein of 433 amino acids containing a complete DNA-binding domain (DBD). Heterologous expression of SaHsfA4c in yeast enhanced Cd stress tolerance and accumulation, whereas expression of the alternatively spliced transcript InSaHsfA4c which contained an intron and harbored an incomplete DBD, resulted in relatively poor Cd stress tolerance and low Cd accumulation in transgenic yeast. The function of SaHsfA4c under Cd stress was characterized in transgenic Arabidopsis and non-hyperaccumulation ecotype S. alfredii. SaHsfA4c was able to rescue the Cd sensitivity of the Arabidopsis athsfa4c mutant. SaHsfA4c reduced reactive oxygen species (ROS) accumulation and increased the expression of ROS-scavenging enzyme genes and Hsps in transgenic lines. The present results suggest that SaHsfA4c increases plant resistance to stress by up-regulating the activities of ROS-scavenging enzyme and the expression of Hsps.
Collapse
Affiliation(s)
- Shuangshuang Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - He Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ying Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
11
|
Zhao H, Wang L, Zhao FJ, Wu L, Liu A, Xu W. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. PLANT, CELL & ENVIRONMENT 2019; 42:1112-1124. [PMID: 30311663 DOI: 10.1111/pce.13456] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Anna Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Park HY, Saini RK, Gopal J, Keum YS, Kim DH, Lee O, Sivanesan I. Micropropagation and Subsequent Enrichment of Carotenoids, Fatty Acids, and Tocopherol Contents in Sedum dasyphyllum L. Front Chem 2017; 5:77. [PMID: 29062834 PMCID: PMC5640719 DOI: 10.3389/fchem.2017.00077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
A promising micropropagation protocol has been systematically established and demonstrated for the enhanced production of carotenoids, tocopherol and fatty acids in shoot tissues of Sedum dasyphyllum. Shoot tip explants were grown on Murashige and Skoog (MS) medium. Different concentrations of N6-benzyladenine (BA) or thidiazuron (TDZ) alone or in combination with α-naphthaleneacetic acid (NAA) were tested in order to stimulate multiple shoot production. Ideal shoot induction (100%) and maximized shoot numbers (36.4) were obtained on explants cultured on media incorporated with 2 μM BA and 1 μM NAA combinations. The in vitro-developed shoots rooted best on half-strength MS media incorporated with 2 μM indole 3-butyric acid. Plantlets were effectively acclimatized in the greenhouse with 100% survival rate. The composition and contents of bioactive compounds such as carotenoids, tocopherol and fatty acids in shoot tissues of S. dasyphyllum were investigated using HPLC and GC-MS. The most abundant carotenoid in the shoot tissue was all-E-lutein (40.3-70.5 μg g-1 FW) followed by 9'-Z-neoxanthin (5.3-9.9 μg g-1 FW), all-E-violaxanthin (4.4-8.2 μg g-1 FW), and all-E-β-carotene (1.6-3.6 μg g-1 FW). The α-tocopherol contents of in vitro-raised shoots was 6.5-fold higher than shoots of greenhouse-grown plants. The primary fatty acids found in shoot tissues were α-linolenic acid (32.0-39.3%), linoleic acid (27.4-38.2%), palmitic acid (13.3-15.5%), and stearic acid (5.2-12.2%). In all, summarizing the findings, the micropropagated S. dasyphyllum showed significant enrichment of valuable bioactive carotenoids (92.3 μg g-1 FW), tocopherols (14.6 μg g-1 FW), and α-linolenic acid (39.3%) compared to their greenhouse counterparts. The protocol demonstrated here could be applied for the mass propagation and production of enhanced bioactive compounds from S. dasyphyllum with credibility.
Collapse
Affiliation(s)
- Han Yong Park
- Department of Bioresource Engineering, Sejong University, Seoul, South Korea
| | - Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Judy Gopal
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Young-Soo Keum
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Doo Hwan Kim
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Onew Lee
- Department of Bioresource Engineering, Sejong University, Seoul, South Korea
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| |
Collapse
|