1
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
2
|
Sertse D, You FM, Klymiuk V, Haile JK, N'Diaye A, Pozniak CJ, Cloutier S, Kagale S. Historical Selection, Adaptation Signatures, and Ambiguity of Introgressions in Wheat. Int J Mol Sci 2023; 24:ijms24098390. [PMID: 37176097 PMCID: PMC10179502 DOI: 10.3390/ijms24098390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.
Collapse
Affiliation(s)
- Demissew Sertse
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Valentyna Klymiuk
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jemanesh K Haile
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
3
|
Frangedakis E, Guzman-Chavez F, Rebmann M, Markel K, Yu Y, Perraki A, Tse SW, Liu Y, Rever J, Sauret-Gueto S, Goffinet B, Schneider H, Haseloff J. Construction of DNA Tools for Hyperexpression in Marchantia Chloroplasts. ACS Synth Biol 2021; 10:1651-1666. [PMID: 34097383 PMCID: PMC8296666 DOI: 10.1021/acssynbio.0c00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chloroplasts are attractive platforms for synthetic biology applications since they are capable of driving very high levels of transgene expression, if mRNA production and stability are properly regulated. However, plastid transformation is a slow process and currently limited to a few plant species. The liverwort Marchantia polymorpha is a simple model plant that allows rapid transformation studies; however, its potential for protein hyperexpression has not been fully exploited. This is partially due to the fact that chloroplast post-transcriptional regulation is poorly characterized in this plant. We have mapped patterns of transcription in Marchantia chloroplasts. Furthermore, we have obtained and compared sequences from 51 bryophyte species and identified putative sites for pentatricopeptide repeat protein binding that are thought to play important roles in mRNA stabilization. Candidate binding sites were tested for their ability to confer high levels of reporter gene expression in Marchantia chloroplasts, and levels of protein production and effects on growth were measured in homoplastic transformed plants. We have produced novel DNA tools for protein hyperexpression in this facile plant system that is a test-bed for chloroplast engineering.
Collapse
Affiliation(s)
- Eftychios Frangedakis
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Fernando Guzman-Chavez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Kasey Markel
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Ying Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Artemis Perraki
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Yang Liu
- Fairy Lake Botanical Garden & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Susanna Sauret-Gueto
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043, United States
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K
| |
Collapse
|
4
|
Dijkhuizen LW, Tabatabaei BES, Brouwer P, Rijken N, Buijs VA, Güngör E, Schluepmann H. Far-Red Light-Induced Azolla filiculoides Symbiosis Sexual Reproduction: Responsive Transcripts of Symbiont Nostoc azollae Encode Transporters Whilst Those of the Fern Relate to the Angiosperm Floral Transition. FRONTIERS IN PLANT SCIENCE 2021; 12:693039. [PMID: 34456937 PMCID: PMC8386757 DOI: 10.3389/fpls.2021.693039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Water ferns of the genus Azolla and the filamentous cyanobacteria Nostoc azollae constitute a model symbiosis that enabled the colonization of the water surface with traits highly desirable for the development of more sustainable crops: their floating mats capture CO2 and fix N2 at high rates using light energy. Their mode of sexual reproduction is heterosporous. The regulation of the transition from the vegetative phase to the spore forming phase in ferns is largely unknown, yet a prerequisite for Azolla domestication, and of particular interest as ferns represent the sister lineage of seed plants. Sporocarps induced with far red light could be crossed so as to verify species attribution of strains from the Netherlands but not of the strain from the Anzali lagoon in Iran; the latter strain was assigned to a novel species cluster from South America. Red-dominated light suppresses the formation of dissemination stages in both gametophyte- and sporophyte-dominated lineages of plants, the response likely is a convergent ecological strategy to open fields. FR-responsive transcripts included those from MIKCC homologues of CMADS1 and miR319-controlled GAMYB transcription factors in the fern, transporters in N. azollae, and ycf2 in chloroplasts. Loci of conserved microRNA (miRNA) in the fern lineage included miR172, yet FR only induced miR529 and miR535, and reduced miR319 and miR159. Phylogenomic analyses of MIKCC TFs suggested that the control of flowering and flower organ specification may have originated from the diploid to haploid phase transition in the homosporous common ancestor of ferns and seed plants.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Paul Brouwer
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Niels Rijken
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Valerie A. Buijs
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Erbil Güngör
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Henriette Schluepmann
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
- *Correspondence: Henriette Schluepmann
| |
Collapse
|
5
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
6
|
Nozoe M, Tsunoyama Y, Ishizaki Y, Nakahira Y, Shiina T. Selective Activation of Chloroplast psbD Light-Responsive Promoter and psaA/B Promoter in Transplastomic Tobacco Plants Overexpressing Arabidopsis Sigma Factor AtSIG5. Protein Pept Lett 2020; 27:168-175. [PMID: 31612816 DOI: 10.2174/0929866526666191014130605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/30/2019] [Accepted: 08/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastid-encoded eubacterial-type RNA polymerase (PEP) plays a critical role in the transcription of photosynthesis genes in chloroplasts. Notably, some of the reaction center genes, including psaA, psaB, psbA, and psbD genes, are differentially transcribed by PEP in mature chloroplasts. However, the molecular mechanism of promoter selection in the reaction center gene transcription by PEP is not well understood. OBJECTIVE Sigma factor proteins direct promoter selection by a core PEP in chloroplasts as well as bacteria. AtSIG5 is a unique chloroplast sigma factor essential for psbD light-responsive promoter (psbD LRP) activity. To analyze the role of AtSIG5 in chloroplast transcription in more detail, we assessed the effect of AtSIG5 hyper-expression on the transcription of plastid-encoded genes in chloroplast transgenic plants. RESULTS The chloroplast transgenic tobacco (CpOX-AtSIG5) accumulates AtSIG5 protein at extremely high levels in chloroplasts. Due to the extremely high-level expression of recombinant AtSIG5, most PEP holoenzymes are most likely to include the recombinant AtSIG5 in the CpOXAtSIG5 chloroplasts. Thus, we can assess the promoter preference of AtSIG5 in vivo. The overexpression of AtSIG5 significantly increased the expression of psbD LRP transcripts encoding PSII reaction center D2 protein and psaA/B operon transcripts encoding PSI core proteins. Furthermore, run-on transcription analyses revealed that AtSIG5 preferentially recognizes the psaA/B promoter, as well as the psbD LRP. Moreover, we found that psbD LRP is constitutively active in CpOX-AtSIG5 plants irrespective of light and dark. CONCLUSION AtSIG5 probably plays a significant role in differential transcription of reaction center genes in mature chloroplasts.
Collapse
Affiliation(s)
- Mikio Nozoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yuichi Tsunoyama
- Radioisotope Research Center, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502,Japan
| | - Yoko Ishizaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| | - Yoichi Nakahira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
- College of Agriculture, Ibaraki University, Ami, Inashiki 300-0393, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606- 8522,Japan
| |
Collapse
|