1
|
Xu X, Ni Z, Zou X, Zhang Y, Tong J, Xu X, Dong Y, Han B, Li S, Wang D, Xia X, He Z, Hao Y. QTL Mapping Reveals Both All-Stage and Adult-Plant Resistance to Powdery Mildew in Chinese Elite Wheat Cultivars. PLANT DISEASE 2023; 107:3230-3237. [PMID: 37018212 DOI: 10.1094/pdis-02-23-0399-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.
Collapse
Affiliation(s)
- Xiaoting Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhongqiu Ni
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zou
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031, Hebei, China
| | - Jingyang Tong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yachao Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Bin Han
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Simin Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
2
|
Hou W, Lu Q, Ma L, Sun X, Wang L, Nie J, Guo P, Liu T, Li Z, Sun C, Ren Y, Wang X, Yang J, Chen F. Mapping of quantitative trait loci for leaf rust resistance in the wheat population 'Xinmai 26/Zhoumai 22'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3019-3032. [PMID: 36879436 DOI: 10.1093/jxb/erad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/02/2023] [Indexed: 05/21/2023]
Abstract
Leaf rust, caused by the fungal pathogen Puccinia triticina (Pt), is one of the major and dangerous diseases of wheat, and has caused serious yield loss of wheat worldwide. Here, we investigated adult-plant resistance (APR) to leaf rust in a recombinant inbred line (RIL) population derived from 'Xinmai 26' and 'Zhoumai 22' over 3 years. Linkage mapping for APR to leaf rust revealed four quantitative trait loci (QTL) in this RIL population. Two QTL, QLr.hnau-2BS and QLr.hnau-3BS were contributed by 'Zhoumai22', whereas QLr.hnau-2DS and QLr.hnau-5AL were contributed by 'Xinmai 26'. The QLr.hnau-2BS covering a race-specific resistance gene Lr13 showed the most stable APR to leaf rust. Overexpression of Lr13 significantly increased APR to leaf rust. Interestingly, we found that a CNL(coiled coil-nucleotide-binding site-leucine-rich repeat)-like gene, TaCN, in QLr.hnau-2BS completely co-segregated with leaf rust resistance. The resistant haplotype TaCN-R possessed half the sequence of the coiled-coil domain of TaCN protein. Lr13 strongly interacted with TaCN-R, but did not interact with the full-length TaCN (TaCN-S). In addition, TaCN-R was significantly induced after Pt inoculation and changed the sub-cellular localization of Lr13 after interaction. Therefore, we hypothesized that TaCN-R mediated leaf rust resistance possibly by interacting with Lr13. This study provides important QTL for APR to leaf rust, and new insights into understanding how a CNL gene modulates disease resistance in common wheat.
Collapse
Affiliation(s)
- Weixiu Hou
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Qisen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Ti Liu
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zaifeng Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/ CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
3
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, Cheng Y, Zheng Y, Zhang B, Yan X, Htun A, Zhao L, Sun C, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:979-989. [PMID: 36650924 PMCID: PMC10106860 DOI: 10.1111/pbi.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023]
Abstract
Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F10 recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes. EMS mutants of TaGL1 possessed significantly reduced grain length, whereas TaGL1-B1-overexpressed lines possessed significantly increased grain length. Moreover, TaGL1-B1 strongly interacted with TaPAP6. TaPAP6-overexpressed lines had significantly increased grain length. Transcriptome analysis suggested that TaPAP6 was possibly involved in the accumulation of JA (jasmonic acid). Consistently, JA content was significantly increased in the TaGL1-B1 and TaPAP6 overexpression lines. Additionally, the role of TaGL1-B1 in regulating carotenoids was verified through QTL mapping, GWAS, EMS mutants and overexpression lines. Notably, overexpression of TaGL1-B1 significantly increased wheat yield in multiple locations. Taken together, overexpression of TaGL1-B1 enhanced grain length, probably through interaction with TaPAP6 to cause the accumulation of JA that improved carotenoid content and photosynthesis, thereby resulted in increased wheat yield. This study provided valuable genes controlling grain length to improve yield and a potential insight into the molecular mechanism of modulating JA-mediated grain size in wheat.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Huiting Hu
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Discovery of a Novel Leaf Rust ( Puccinia recondita) Resistance Gene in Rye ( Secale cereale L.) Using Association Genomics. Cells 2021; 11:cells11010064. [PMID: 35011626 PMCID: PMC8750363 DOI: 10.3390/cells11010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.
Collapse
|
5
|
Discovery of a novel powdery mildew (Blumeria graminis) resistance locus in rye (Secale cereale L.). Sci Rep 2021; 11:23057. [PMID: 34845285 PMCID: PMC8630102 DOI: 10.1038/s41598-021-02488-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
Powdery mildew is one of the most destructive diseases in the world, causing substantial grain yield losses and quality reduction in cereal crops. At present 23 powdery mildew resistance genes have been identified in rye, of which the majority are in wheat-rye translocation lines developed for wheat improvement. Here, we investigated the genetics underlying powdery mildew resistance in the Gülzow-type elite hybrid rye (Secale cereale L.) breeding germplasm. In total, 180 inbred breeding lines were genotyped using the state-of-the-art 600 K SNP array and phenotyped for infection type against three distinct field populations of B. graminis f. sp. secalis from Northern Germany (2013 and 2018) and Denmark (2020). We observed a moderate level of powdery mildew resistance in the non-restorer germplasm population, and by performing a genome-wide association study using 261,406 informative SNP markers, we identified a powdery mildew resistance locus, provisionally denoted PmNOS1, on the distal tip of chromosome arm 7RL. Using recent advances in rye genomic resources, we investigated whether nucleotide-binding leucine-rich repeat genes residing in the identified 17 Mbp block associated with PmNOS1 on recent reference genomes resembled known Pm genes.
Collapse
|
6
|
Ge C, Wentzel E, D'Souza N, Chen K, Oliver RP, Ellwood SR. Adult resistance genes to barley powdery mildew confer basal penetration resistance associated with broad-spectrum resistance. THE PLANT GENOME 2021; 14:e20129. [PMID: 34392613 DOI: 10.1002/tpg2.20129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew isa major disease of barley (Hordeum vulgare L.) for which breeders have traditionally relied on dominant, pathogen race-specific resistance genes for genetic control. Directional selection pressures in extensive monocultures invariably result in such genes being overcome as the pathogen mutates to evade recognition. This has led to a widespread reliance on fungicides and a single broad-spectrum recessive resistance provided by the mlo gene. The range of resistance genes and alleles found in wild crop relatives and landraces has been reduced in agricultural cultivars through an erosion of genetic diversity during domestication and selective breeding. Three novel major-effect adult plant resistance (APR) genes from landraces, designated Resistance to Blumeria graminis f. sp. hordei (Rbgh1 to Rbgh3), were identified in the terminal regions of barley chromosomes 5HL, 7HS, and 1HS, respectively. The phenotype of the new APR genes showed neither pronounced penetration resistance, nor the spontaneous necrosis and mesophyll cell death typical of mlo resistance, nor a whole epidermal cell hypersensitive response, typical of race-specific resistance. Instead, resistance was localized to the site of attempted penetration in an epidermal cell and was associated with cell wall appositions and cytosolic vesicle-like bodies, and lacked strong induction of reactive oxygen species. The APR genes exhibited differences in vesicle-like body sizes, their distribution, and the extent of localized 3,3-diaminobenzidine staining in individual doubled haploid lines. The results revealed a set of unique basal penetration resistance genes that offer opportunities for combining different resistance mechanisms in breeding programs for robust mildew resistance.
Collapse
Affiliation(s)
- Cynthia Ge
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| | - Elzette Wentzel
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| | - Nola D'Souza
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| | - Kefei Chen
- Statistics for the Australian Grains Industry-West, School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| | - Richard P Oliver
- School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin Univ., Bentley, WA, 6102, Australia
| |
Collapse
|
7
|
Dyda M, Tyrka M, Gołębiowska G, Rapacz M, Wędzony M. Genetic mapping of adult-plant resistance genes to powdery mildew in triticale. J Appl Genet 2021; 63:73-86. [PMID: 34561842 PMCID: PMC8755695 DOI: 10.1007/s13353-021-00664-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.
Collapse
Affiliation(s)
- Mateusz Dyda
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - Maria Wędzony
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
8
|
Taranto F, D'Agostino N, Rodriguez M, Pavan S, Minervini AP, Pecchioni N, Papa R, De Vita P. Whole Genome Scan Reveals Molecular Signatures of Divergence and Selection Related to Important Traits in Durum Wheat Germplasm. Front Genet 2020; 11:217. [PMID: 32373150 PMCID: PMC7187681 DOI: 10.3389/fgene.2020.00217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.
Collapse
Affiliation(s)
- Francesca Taranto
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy.,CBV - Interdepartmental Centre for Plant Biodiversity Conservation and Enhancement Sassari University, Alghero, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna P Minervini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
9
|
Leonova IN. Genome-Wide Association Study of Powdery Mildew Resistance in Russian Spring Wheat (T. aestivum L.) Varieties. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis Using a Multiparental Winter Wheat Population. G3-GENES GENOMES GENETICS 2019; 9:1745-1757. [PMID: 30902891 PMCID: PMC6505172 DOI: 10.1534/g3.119.400068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bread wheat (Triticum aestivum L.) is one of the world’s most important crop species. The development of new varieties resistant to multiple pathogens is an ongoing task in wheat breeding, especially in times of increasing demand for sustainable agricultural practices. Despite this, little is known about the relations between various fungal disease resistances at the genetic level, and the possible consequences for wheat breeding strategies. As a first step to fill this gap, we analyzed the genetic relations of resistance to the three fungal diseases – powdery mildew (PM), septoria tritici blotch (STB), and tan spot (TS) – using a winter wheat multiparent advanced generation intercross population. Six, seven, and nine QTL for resistance to PM, STB, and TS, respectively, were genetically mapped. Additionally, 15 QTL were identified for the three agro-morphological traits plant height, ear emergence time, and leaf angle distribution. Our results suggest that resistance to STB and TS on chromosome 2B is conferred by the same genetic region. Furthermore, we identified two genetic regions on chromosome 1AS and 7AL, which are associated with all three diseases, but not always in a synchronal manner. Based on our results, we conclude that parallel marker-assisted breeding for resistance to the fungal diseases PM, STB, and TS appears feasible. Knowledge of the genetic co-localization of alleles with contrasting effects for different diseases, such as on chromosome 7AL, allows the trade-offs of selection of these regions to be better understood, and ultimately determined at the genic level.
Collapse
|
11
|
Yang X, Pan Y, Singh PK, He X, Ren Y, Zhao L, Zhang N, Cheng S, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC PLANT BIOLOGY 2019; 19:153. [PMID: 31014249 PMCID: PMC6480828 DOI: 10.1186/s12870-019-1758-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fusarium crown rot (FCR) is a severe and chronic disease in common wheat and is able to cause serious yield loss and health problems to human and livestock. RESULTS Here, 234 Chinese wheat cultivars were evaluated in four greenhouse experiments for FCR resistance and genome-wide association studies (GWAS) were performed using the wheat 660 K genotyping assay. The results indicated that most cultivars evaluated showed FCR disease index (DI) of 40-60, while some cultivars showed stably good FCR resistance (DI < 30). GWAS identified 286 SNPs to be significantly associated with FCR resistance, of which 266, 6 and 8 were distributed on chromosomes 6A, 6B and 6D, respectively. The significant SNPs on 6A were located in a 7.0-Mb region containing 51 annotated genes. On the other hand, QTL mapping using a bi-parental population derived from UC1110 and PI610750 detected three QTLs on chromosomes 6A (explaining 7.77-10.17% of phenotypic variation), 2D (7.15-9.29%) and 2A (5.24-6.92%). The 6A QTL in the UC1110/PI610750 population falls into the same chromosomal region as those detected from GWAS, demonstrating its importance in Chinese materials for FCR resistance. CONCLUSION This study could provide useful information for utilization of FCR-resistant wheat germplasm and further understanding of molecular and genetics basis of FCR resistance in common wheat.
Collapse
Affiliation(s)
- Xia Yang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Yubo Pan
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| | - Shunhe Cheng
- Lixiahe Institute of Agricultural and Sciences, Yangzhou, 225007 Jiangsu China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046 China
| |
Collapse
|