1
|
Peng JS, Zhang XJ, Xiong JN, Zhou Y, Wang WL, Chen SY, Zhang DW, Gu TY. Characterization of genes involved in micronutrients and toxic metals detoxification in Brassica napus by genome-wide cDNA library screening. Metallomics 2023; 15:mfad068. [PMID: 37989719 DOI: 10.1093/mtomcs/mfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Stresses caused by deficiency/excess of mineral nutrients or of pollution of toxic metals have already become a primary factor in limiting crop production worldwide. Genes involved in minerals and toxic metals accumulation/tolerance could be potential candidates for improving crop plants with enhanced nutritional efficiency and environmental adaptability. In this study, we first generated a high-quality yeast expression cDNA library of Brassica napus (Westar), and 46 genes mediating excess micronutrients and toxic metals detoxification were screened using the yeast genetic complementation system, including 11, 5, 6, 14, 6, and 5 genes involved in cadmium (Cd), zinc (Zn), iron (Fe), manganese (Mn), boron (B), and copper (Cu) tolerance, respectively. Characterization of genes mediating excess ions stress resistance in this study is beneficial for us to further understand ions homeostasis in B. napus.
Collapse
Affiliation(s)
- Jia-Shi Peng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Xue-Jie Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Jia-Ni Xiong
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Ying Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Wei-Li Wang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, Guangdong, China
| | - Si-Ying Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Da-Wei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Tian-Yu Gu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| |
Collapse
|
2
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Jahan N, Javed MA, Khan A, Manan FA, Tabassum B. Genetic architecture of Al 3+ toxicity tolerance in rice F 2:3 populations determined through QTL mapping. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:794-805. [PMID: 33871748 DOI: 10.1007/s10646-021-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al3+) toxicity is one of the factors limiting crop production in acidic soils. Identifying quantitative trait loci (QTLs)/genes for tolerance to Al3+ toxicity at seed germination can aid the development of new tolerant cultivars. The segregating population derived from Pak Basmati (Indica) × Pokkali (Indica) was used for mapping QTLs linked with tolerance to Al3+ toxicity ranging from 0 to 20 mM at pH 4 ± 0.2 at germination. The favorable alleles for all new QTLs were analyzed based on germination traits, i.e., final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean germination time (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC), and growth traits, such as root length (RL), shoot length (SL), total dry biomass (TDB) and germination vigor index (GVI). The phenotypic evolution showed transgressive variations. For genome-wide mapping, 90 polymorphic SSRs with 4 gene-specific markers and Win QTL Cart were used for QTL analysis. In all, 35 QTLs for germination and 11 QTLs for seedling growth were detected in distinct chromosomal regions by composite interval mapping (CIM), and multiple interval mapping (MIM) confirmed the pleiotropy at region RM128 on chromosome 1. Based on our genetic mapping studies, the genes/QTLs underlying tolerance to Al3+ toxicity could differ for both the germination and seedling stages in segregated populations. The QTLs identified in this study could be a source of new alleles for improving tolerance to Al3+ toxicity in rice.
Collapse
Affiliation(s)
- Nusrat Jahan
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan.
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhammad Arshad Javed
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Anwar Khan
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Fazilah Abd Manan
- Faculty of Biosciences and Medical Engineering (FBME), Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Johor, Malaysia
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Gu D, Zhou X, Ma Y, Xu E, Yu Y, Liu Y, Chen X, Zhang W. Expression of a Brassica napus metal transport protein (BnMTP3) in Arabidopsis thaliana confers tolerance to Zn and Mn. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110754. [PMID: 33568293 DOI: 10.1016/j.plantsci.2020.110754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The essential micronutrient elements zinc (Zn) and manganese (Mn) are crucial for plant growth and development. As an important oil crop, the yield and quality of rapeseed are affected by Zn and Mn toxicity. The cation diffusion facilitator (CDF) family of proteins play significant roles in maintaining intracellular ionic homeostasis and tolerance in plants. However, research on CDF proteins in rapeseed is lacking. In this study, the function of a Brassica napus cation diffusion facilitator/ metal tolerance protein (CDF/MTP) was investigated. The protein, abbreviated BnMTP3 is homologous to the Arabidopsis thaliana MTP3 (AtMTP3). Heterologous expression of BnMTP3 in yeast enhanced tolerance and intracellular sequestration of Zn and Mn. Expression of BnMTP3 in A. thaliana increased Zn and Mn tolerance and markedly increased Zn accumulation in roots. Quantitative RT-PCR analysis showed that BnMTP3 is primarily expressed in roots, and subcellular localization suggested that BnMTP3 is localized in the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) in Arabidopsis and rape protoplast. After treatment with Zn and Mn, BnMTP3 was observed on the vacuolar membrane in transgenic Arabidopsis lines. These findings suggest that BnMTP3 confers Zn and Mn tolerance by sequestering Zn and/or Mn into the vacuole.
Collapse
Affiliation(s)
- Dongfang Gu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xueli Zhou
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yurou Ma
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yihong Yu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiheng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
5
|
Raman H, Raman R, Diffey S, Qiu Y, McVittie B, Barbulescu DM, Salisbury PA, Marcroft S, Delourme R. Stable Quantitative Resistance Loci to Blackleg Disease in Canola ( Brassica napus L.) Over Continents. FRONTIERS IN PLANT SCIENCE 2018; 9:1622. [PMID: 30532758 PMCID: PMC6265502 DOI: 10.3389/fpls.2018.01622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
The hemibiotrophic fungus, Leptosphaeria maculans is the most devastating pathogen, causing blackleg disease in canola (Brassica napus L). To study the genomic regions involved in quantitative resistance (QR), 259-276 DH lines from Darmor-bzh/Yudal (DYDH) population were assessed for resistance to blackleg under shade house and field conditions across 3 years. In different experiments, the broad sense heritability varied from 43 to 95%. A total of 27 significant quantitative trait loci (QTL) for QR were detected on 12 chromosomes and explained between 2.14 and 10.13% of the genotypic variance. Of the significant QTL, at least seven were repeatedly detected across different experiments on chromosomes A02, A07, A09, A10, C01, and C09. Resistance alleles were mainly contributed by 'Darmor-bzh' but 'Yudal' also contributed few of them. Our results suggest that plant maturity and plant height may have a pleiotropic effect on QR in our conditions. We confirmed that Rlm9 which is present in 'Darmor-bzh' is not effective to confer resistance in our Australian field conditions. Comparative mapping showed that several R genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors map in close proximity (within 200 Kb) of the significant trait-marker associations on the reference 'Darmor-bzh' genome assembly. More importantly, eight significant QTL regions were detected across diverse growing environments: Australia, France, and United Kingdom. These stable QTL identified herein can be utilized for enhancing QR in elite canola germplasm via marker- assisted or genomic selection strategies.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Simon Diffey
- Centre for Bioinformatics and Biometrics, University of Wollongong, Wollongong, NSW, Australia
| | - Yu Qiu
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brett McVittie
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | | | - Phil Anthony Salisbury
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Regine Delourme
- IGEPP, INRA, Agrocampus Ouest, Université Rennes, Le Rheu, France
| |
Collapse
|