1
|
Nehela Y, Killiny N. Gamma-Aminobutyric Acid Supplementation Boosts the Phytohormonal Profile in ' Candidatus Liberibacter asiaticus'-Infected Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3647. [PMID: 37896110 PMCID: PMC10609878 DOI: 10.3390/plants12203647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The devastating citrus disease, Huanglongbing (HLB), is associated with 'Candidatus Liberibacter sp.' and transmitted by citrus psyllids. Unfortunately, HLB has no known sustainable cure yet. Herein, we proposed γ-aminobutyric acid (GABA) as a potential eco-friendly therapeutic solution to HLB. Herein, we used GC/MS-based targeted metabolomics combined with gene expression to investigate the role of GABA in citrus response against HLB and to better understand its relationship(s) with different phytohormones. GABA supplementation via root drench boosts the accumulation of endogenous GABA in the leaves of both healthy and 'Ca. L. asiaticus'-infected trees. GABA accumulation benefits the activation of a multi-layered defensive system via modulating the phytohormone levels and regulating the expression of their biosynthesis genes and some pathogenesis-related proteins (PRs) in both healthy and 'Ca. L. asiaticus'-infected plants. Moreover, our findings showed that GABA application stimulates auxin biosynthesis in 'Ca. L. asiaticus'-infected plants via the activation of the indole-3-pyruvate (I3PA) pathway, not via the tryptamine (TAM)-dependent pathway, to enhance the growth of HLB-affected trees. Likewise, GABA accumulation was associated with the upregulation of SA biosynthesis genes, particularly the PAL-dependent route, resulting in higher SA levels that activated CsPR1, CsPR2, CsPR5, and CsWRKY70, which are prominent to activation of the SA-mediated pathway. Additionally, higher GABA levels were correlated with an enhanced JA profile and linked with both CsPR3 and CsPR4, which activates the JA-mediated pathway. Collectively, our findings suggest that exogenous GABA application might be a promising alternative and eco-friendly strategy that helps citrus trees battle HLB.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
2
|
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int J Mol Sci 2023; 24:15311. [PMID: 37894991 PMCID: PMC10607095 DOI: 10.3390/ijms242015311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for grape breeding with high quality and disease resistance. The core theory of this method is the substitution accumulation of multi-genes with low disease resistance. The discovery of multi-genes for disease resistance in V. vinifera may provide a molecular basis for breeding for disease resistance in V. vinifera. In this study, resistance to downy mildew was identified, and genetic analysis was carried out in the intraspecific crossing population of V. vinifera (Ecolly × Dunkelfelder) to screen immune, highly resistant and disease-resistant plant samples; transcriptome sequencing and differential expression analysis were performed using high-throughput sequencing. The results showed that there were 546 differential genes (194 up-regulated and 352 down-regulated) in the immune group compared to the highly resistant group, and 199 differential genes (50 up-regulated and 149 down-regulated) in the highly resistant group compared to the resistant group, there were 103 differential genes (54 up-regulated and 49 down-regulated) in the immune group compared to the resistant group. KEGG analysis of differentially expressed genes in the immune versus high-resistance group. The pathway is mainly concentrated in phenylpropanoid biosynthesis, starch and sucrose metabolism, MAPK signaling pathway-plant, carotenoid biosyn-thesis and isoquinoline alkaloid biosynthesis. The differential gene functions of immune and resistant, high-resistant and resistant combinations were mainly enriched in plant-pathogen interaction pathway. Through the analysis of disease resistance-related genes in each pathway, the potential minor resistance genes in V. vinifera were mined, and the accumulation of minor resistance genes was analyzed from the molecular level.
Collapse
Affiliation(s)
- Junli Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Liang Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Shan Jiang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
3
|
The Different Metabolic Responses of Resistant and Susceptible Wheats to Fusarium graminearum Inoculation. Metabolites 2022; 12:metabo12080727. [PMID: 36005599 PMCID: PMC9413380 DOI: 10.3390/metabo12080727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum (Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins produced by Fg are harmful to the environment and humans. In our previous study, we obtained two mutants TPS1− and TPS2−. Neither of these mutants could synthesize trehalose, and they produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O, the TPS− mutants and wild type (WT) using NMR combined with multivariate analysis. More than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids, choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear metabolic differences between inoculation with mutants (TPS1−/TPS2−) and with ddH2O/WT. For the susceptible wheat, there were obvious metabolic differences between inoculation with mutant (TPS1−/TPS2−) and inoculation with ddH2O; however, there were no significant metabolic differences between inoculation with TPS− mutants and with WT. Specifically, compared with ddH2O, resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid in response to TPS− mutants; however, susceptible wheat did not. Shikimate-mediated secondary metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat remains to be further studied.
Collapse
|
4
|
Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
|
5
|
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1862565. [PMID: 33404284 PMCID: PMC7889023 DOI: 10.1080/15592324.2020.1862565] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in Agrobacterium tumefaciens-mediated plant gene transformation and in plant development, especially in pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent research on GABA function and transporters with the goal of providing a review of GABA in plants.
Collapse
Affiliation(s)
- Li Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Na Dou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
6
|
Comparative transcriptome analysis of a taxol-producing endophytic fungus, Aspergillus aculeatinus Tax-6, and its mutant strain. Sci Rep 2020; 10:10558. [PMID: 32601443 PMCID: PMC7324598 DOI: 10.1038/s41598-020-67614-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/11/2020] [Indexed: 12/02/2022] Open
Abstract
Taxol is a rare but extremely effective antitumor agent extracted from Taxus yew barks. Taxus plants are valuable and rare species, and the production of taxol from them is a complex process. Therefore, taxol-producing endophytic fungi seem to be a promising alternative because of their high practical value and convenient progress. In this study, the transcriptome of an endophytic fungus, Aspergillus aculeatinus Tax-6 was analyzed in order to understand the molecular mechanisms of producing fungal taxol. The results showed that genes involved in the mevalonate (MVA) pathway and non-mevalonate (MEP) pathway were expressed, including isopentenyl pyrophosphate transferase, geranyl pyrophosphate transferase, and geranylgeranyl pyrophosphate synthetase. However, those downstream genes involved in the conversion of taxa-4(5)-11(12)-diene from geranylgeranyl pyrophosphate were not expressed except for taxane 10-beta-hydroxylase. Additionally, a mutant strain, A. aculeatinus BT-2 was obtained from the original strain, A. aculeatinus Tax-6, using fungicidin as the mutagenic agent. The taxol yield of BT-2 was 560 µg L−1, which was higher than that of Tax-6. To identify the mechanism of the difference in taxol production, we compared the transcriptomes of the two fungi and explored the changes in the gene expression between them. When compared with the original strain, Tax-6, most genes related to the MVA pathway in the mutant strain BT-2 showed upregulation, including GGPPS. Moreover, most of the downstream genes were not expressed in the mutant fungi as well. Overall, the results revealed the pathway and mechanism of taxol synthesis in endophytic fungi and the potential for the construction of taxol-producing genetic engineering strains.
Collapse
|
7
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Balmer A, Pastor V, Glauser G, Mauch-Mani B. Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1221. [PMID: 30177948 PMCID: PMC6110165 DOI: 10.3389/fpls.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
Exposure of plants to biotic stress results in an effective induction of numerous defense mechanisms that involve a vast redistribution within both primary and secondary metabolisms. For instance, an alteration of tricarboxylic acid (TCA) levels can accompany the increase of plant resistance stimulated by various synthetic and natural inducers. Moreover, components of the TCA flux may play a role during the set-up of plant defenses. In this study, we show that citrate and fumarate, two major components of the TCA cycle, are able to induce priming in Arabidopsis against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Both citrate and fumarate show no direct antimicrobial effect and therefore enhanced bacterial resistance found in planta is solely based on the induction of the plant defense system. During the priming phase, both TCA intermediates did not induce any changes in transcript abundances of a set of defense genes, and in phytohormones and camalexin levels. However, at early time points of bacterial challenge, citrate induced a stronger salicylic acid and camalexin accumulation followed later by a boost of the jasmonic acid pathway. On the other hand, adaptations of hormonal pathways in fumarate-treated plants were more complex. While jasmonic acid was not induced, mutants impaired in jasmonic acid perception failed to mount a proper priming response induced by fumarate. Our results suggest that changes in carboxylic acid abundances can enhance Arabidopsis defense through complex signaling pathways. This highlights a promising feature of TCAs as novel defense priming agents and calls for further exploration in other pathosystems and stress situations.
Collapse
Affiliation(s)
- Andrea Balmer
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume I, Castellon, Spain
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Laboratory of Molecular and Cell Biology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|