1
|
Zhou H, Hu YY, Tang ZX, Jiang ZB, Huang J, Zhang T, Shen HY, Ye XP, Huang XY, Wang X, Zhou T, Bai XL, Zhu Q, Shi LE. Calcium Transport and Enrichment in Microorganisms: A Review. Foods 2024; 13:3612. [PMID: 39594028 PMCID: PMC11593130 DOI: 10.3390/foods13223612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Calcium is a vital trace element for the human body, and its deficiency can result in a range of pathological conditions, including rickets and osteoporosis. Despite the numerous types of calcium supplements currently available on the market, these products are afflicted with a number of inherent deficiencies, such as low calcium content, poor aqueous solubility, and low human absorption rate. Many microorganisms, particularly beneficial microorganisms, including edible fungi, lactic acid bacteria, and yeast, are capable of absorbing and enriching calcium, a phenomenon that has been widely documented. This opens the door to the potential utilization of microorganisms as novel calcium enrichment carriers. However, the investigation of calcium-rich foods from microorganisms still faces many obstacles, including a poor understanding of calcium metabolic pathways in microorganisms, a relatively low calcium enrichment rate, and the slow growth of strains. Therefore, in order to promote the development of calcium-rich products from microorganisms, this paper provides an overview of the impacts of calcium addition on strain growth, calcium enrichment rate, antioxidant system, and secondary metabolite production. Additionally, it highlights calcium transport and enrichment mechanisms in microorganism cells and offers a detailed account of the progress made on calcium-binding proteins, calcium transport pathways, and calcium storage and release. This paper offers insights for further research on the relevant calcium enrichment in microorganism cells.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Yan-Yu Hu
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Zhong-Bao Jiang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Jie Huang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Tian Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Hui-Yang Shen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xin-Pei Ye
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xuan-Ya Huang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xiang Wang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Ting Zhou
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xue-Lian Bai
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Qin Zhu
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| |
Collapse
|
2
|
Yang Q, Liu H, Xi Y, Lu Y, Han X, He X, Qi J, Zhu Y, He H, Wang J, Hu J, Li L. Genome-wide association study for bone quality of ducks during the laying period. Poult Sci 2024; 103:103575. [PMID: 38447311 PMCID: PMC11067773 DOI: 10.1016/j.psj.2024.103575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
The cage-rearing model of the modern poultry industry makes the bones of birds, especially egg-laying birds, more vulnerable to fracture, which poses serious damage to the health of birds. Research confirms that genetic material plays an important role in regulating bone growth, development, and remodeling. However, the genetic architecture underlying bone traits is not well understood. The objectives of this study are to identify valuable genes and genetic markers through a genome-wide association study (GWAS) for breeding to improve the duck bone quality. First, we quantified the tibia and femur quality traits of 260 laying ducks. Based on GWAS, a total of 75 SNP loci significantly associated with bone quality traits were identified, and 67 potential candidate genes were annotated. According to gene function analysis, genes P4HA2, WNT3A, and BST1 et al may influence bone quality by regulating bone cell activity, calcium and phosphate metabolism, or bone collagen maturation and cross-linking. Meanwhile, combined with the transcriptome results, we found that HOXB cluster genes are also important in bone growth and development. Therefore, our findings were helpful in further understanding the genetic architecture of the duck bone quality and provided a worthy theoretical basis and technological support to improve duck bone quality by breeding.
Collapse
Affiliation(s)
- Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yang Xi
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Yuanchun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 613000, China.
| |
Collapse
|
3
|
Wu Q, Liu H, Yang Q, Qi J, Xi Y, Tang Q, Wang R, Hu J, Li L. Transcriptome-based comparison reveals key genes regulating allometry growth of forelimb and hindlimb bone in duck embryos. Poult Sci 2024; 103:103317. [PMID: 38160613 PMCID: PMC10792745 DOI: 10.1016/j.psj.2023.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.
Collapse
Affiliation(s)
- Qifan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Ministry of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
5
|
Rassbach J, Hilsberg N, Haensch VG, Dörner S, Gressler J, Sonnabend R, Semm C, Voigt K, Hertweck C, Gressler M. Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales. Fungal Biol Biotechnol 2023; 10:19. [PMID: 37670394 PMCID: PMC10478498 DOI: 10.1186/s40694-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described compounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoopagomycota) as they are considered to rarely produce secondary metabolites. Indeed, only 15 compounds have as yet been isolated from the entire phylum of the Zoopagomycota. RESULTS Here, we showcase eight species of the order Kickxellales (phylum Zoopagomycota) as potent producers of the indole-3-acetic acid (IAA)-derived compounds lindolins A and B. The compounds are produced both under laboratory conditions and in the natural soil habitat suggesting a specialized ecological function. Indeed, lindolin A is a selective agent against plant-pathogenic oomycetes such as Phytophthora sp. Lindolin biosynthesis was reconstituted in vitro and relies on the activity of two enzymes of dissimilar evolutionary origin: Whilst the IAA-CoA ligase LinA has evolved from fungal 4-coumaryl-CoA synthetases, the subsequently acting IAA-CoA:anthranilate N-indole-3-acetyltransferase LinB is a unique enzyme across all kingdoms of life. CONCLUSIONS This is the first report on bioactive secondary metabolites in the subphylum Kickxellomycotina and the first evidence for a non-clustered, two-step biosynthetic route of secondary metabolites in early-diverging fungi. Thus, the generally accepted "gene cluster hypothesis" for natural products needs to be reconsidered for early diverging fungi.
Collapse
Affiliation(s)
- Johannes Rassbach
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Nathalie Hilsberg
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Veit G Haensch
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Sebastian Dörner
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Julia Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Robin Sonnabend
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Caroline Semm
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Kerstin Voigt
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Markus Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
6
|
Basiru S, Ait Si Mhand K, Hijri M. Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. MYCORRHIZA 2023; 33:119-137. [PMID: 36961605 DOI: 10.1007/s00572-023-01107-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/21/2023] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the plant root mycobiome and are found in approximately 80% of land plants. As obligate plant symbionts, AMF harbor their own microbiota, both inside and outside the plant root system. AMF-associated bacteria (AAB) possess various functional traits, including nitrogen fixation, organic and inorganic phosphate mobilization, growth hormone production, biofilm production, enzymatic capabilities, and biocontrol against pathogen attacks, which not only contribute to the health of the arbuscular mycorrhizal symbiosis but also promote plant growth. Because of this, there is increasing interest in the diversity, functioning, and mechanisms that underlie the complex interactions between AMF, AAB, and plant hosts. This review critically examines AMF-associated bacteria, focusing on AAB diversity, the factors driving richness and community composition of these bacteria across various ecosystems, along with the physical, chemical, and biological connections that enable AMF to select and recruit beneficial bacterial symbionts on and within their structures and hyphospheres. Additionally, potential applications of these bacteria in agriculture are discussed, emphasizing the potential importance of AMF fungal highways in engineering plant rhizosphere and endophyte bacteria communities, and the importance of a functional core of AAB taxa as a promising tool to improve plant and soil productivity. Thus, AMF and their highly diverse bacterial taxa represent important tools that could be efficiently explored in sustainable agriculture, carbon sequestration, and reduction of greenhouse gas emissions related to nitrogen fertilizer applications. Nevertheless, future studies adopting integrated multidisciplinary approaches are crucial to better understand AAB functional diversity and the mechanisms that govern these tripartite relationships.
Collapse
Affiliation(s)
- Sulaimon Basiru
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Khadija Ait Si Mhand
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Institut de recherche en biologie végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, QC, Montréal, Canada.
| |
Collapse
|
7
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
8
|
Wannitikul P, Wattana-Amorn P, Sathitnaitham S, Sakulkoo J, Suttangkakul A, Wonnapinij P, Bassel GW, Simister R, Gomez LD, Vuttipongchaikij S. Disruption of a DUF247 Containing Protein Alters Cell Wall Polysaccharides and Reduces Growth in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1977. [PMID: 37653894 PMCID: PMC10221614 DOI: 10.3390/plants12101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Plant cell wall biosynthesis is a complex process that requires proteins and enzymes from glycan synthesis to wall assembly. We show that disruption of At3g50120 (DUF247-1), a member of the DUF247 multigene family containing 28 genes in Arabidopsis, results in alterations to the structure and composition of cell wall polysaccharides and reduced growth and plant size. An ELISA using cell wall antibodies shows that the mutants also exhibit ~50% reductions in xyloglucan (XyG), glucuronoxylan (GX) and heteromannan (HM) epitopes in the NaOH fraction and ~50% increases in homogalacturonan (HG) epitopes in the CDTA fraction. Furthermore, the polymer sizes of XyGs and GXs are reduced with concomitant increases in short-chain polymers, while those of HGs and mHGs are slightly increased. Complementation using 35S:DUF247-1 partially recovers the XyG and HG content, but not those of GX and HM, suggesting that DUF247-1 is more closely associated with XyGs and HGs. DUF247-1 is expressed throughout Arabidopsis, particularly in vascular and developing tissues, and its disruption affects the expression of other gene members, indicating a regulatory control role within the gene family. Our results demonstrate that DUF247-1 is required for normal cell wall composition and structure and Arabidopsis growth.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Pakorn Wattana-Amorn
- Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand;
| | - Sukhita Sathitnaitham
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Jenjira Sakulkoo
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - George W. Bassel
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Rachael Simister
- CNAP, Department of Biology, University of York, Heslington, York YO10 5DD, UK; (R.S.); (L.D.G.)
| | - Leonardo D. Gomez
- CNAP, Department of Biology, University of York, Heslington, York YO10 5DD, UK; (R.S.); (L.D.G.)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
9
|
Wang J, Ma S, Wu Q, Xu Q, Wang J, Zhang R, Bai L, Li L, Liu H. Effects of testis testosterone deficiency on gene expression in the adrenal gland and skeletal muscle of ducks. Br Poult Sci 2023. [PMID: 36735924 DOI: 10.1080/00071668.2023.2176741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Testosterone has an anabolic effect on skeletal muscle. The testes produce most of the testosterone in vivo, while the adrenal glands contribute smaller amounts. When testis testosterone is deficient the adrenal gland increases steroid hormone synthesis, which is referred to as compensatory testicular adaptation (CTA).2. To reveal the effects of testis testosterone deficiency on adrenal steroid hormones synthesis and skeletal muscle development, gene expression related to adrenal steroid hormones synthesis and skeletal muscle development were determined by RNA-seq.3. The results showed that castrating male ducks had significant effects on their body weight but no significant impact on cross-sectional area (CSA) or density of pectoral muscle fibres. In skeletal muscle protein metabolism, expression levels of the catabolic gene atrogin1/MAFbx and the anabolic gene eEF2 were significantly higher, with concomitant increases after castration. The adrenal glands' alteration of the steroid hormone 11β-hydroxylase (CYP11B1) was significantly lower following castration.4. Expression pattern analysis showed that the adrenal glands' glucocorticoid receptor (NR3C1/GR) had a potential regulatory relationship with the skeletal muscle-related genes (Pax7, mTOR, FBXO32, FOXO3, and FOXO4).5. The data showed that castration affected muscle protein metabolism, adrenal steroid and testosterone synthesis. In addition, it was speculated that, after castration, steroid hormones produced by the adrenal gland could have a compensatory effect, which might mediate the changes in skeletal muscle protein metabolism and development.
Collapse
Affiliation(s)
- J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - S Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Q Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - R Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
10
|
Guan Y, Ma L, Wang Q, Zhao J, Wang S, Wu J, Liu Y, Sun H, Huang J. Horizontally acquired fungal killer protein genes affect cell development in mosses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:665-676. [PMID: 36507655 DOI: 10.1111/tpj.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The moss Physcomitrium patens is crucial for studying plant development and evolution. Although the P. patens genome includes genes acquired from bacteria, fungi and viruses, the functions and evolutionary significance of these acquired genes remain largely unclear. Killer protein 4 (KP4) is a toxin secreted by the phytopathogenic fungus Ustilago maydis that inhibits the growth of sensitive target strains by blocking their calcium uptake. Here, we show that KP4 genes in mosses were acquired from fungi through at least three independent events of horizontal gene transfer. Two paralogous copies of KP4 (PpKP4-1 and PpKP4-2) exist in P. patens. Knockout mutants ppkp4-1 and ppkp4-2 showed cell death at the protonemal stage, and ppkp4-2 also exhibited defects in tip growth. We provide experimental evidence indicating that PpKP4-1/2 affects P. patens protonemal cell development by mediating cytoplasmic calcium and that KP4 genes are functionally conserved between P. patens and fungi. The present study provides additional insights into the role of horizontal gene transfer in land plant development and evolution.
Collapse
Affiliation(s)
- Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Science, Shenzhen, 518004, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475001, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
11
|
Lactobacillus for ribosome peptide editing cancer. Clin Transl Oncol 2023; 25:1522-1544. [PMID: 36694080 PMCID: PMC9873400 DOI: 10.1007/s12094-022-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023]
Abstract
This study reviews newly discovered insect peptide point mutations as new possible cancer research targets. To interpret newly discovered peptide point mutations in insects as new possible cancer research targets, we focused on the numerous peptide changes found in the 'CSP' family on the sex pheromone gland of the female silkworm moth Bombyx mori. We predict that the Bombyx peptide modifications will have a significant effect on cancer CUP (cancers of unknown primary) therapy and that bacterial peptide editing techniques, specifically Lactobacillus combined to CRISPR, will be used to regulate ribosomes and treat cancer in humans.
Collapse
|
12
|
Wang Y, Shahid MQ. Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume. FRONTIERS IN PLANT SCIENCE 2023; 13:1035157. [PMID: 36684780 PMCID: PMC9848658 DOI: 10.3389/fpls.2022.1035157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Horizontal gene transfer is a rare and useful genetic mechanism in higher plants. Gastrodia elata Blume (GE) (Orchidaceae), well known as traditional medicinal material in East Asia, adopts a heterotrophic lifestyle, thus being considered to be more prone to horizontal gene transfer (HGT). GE is a "polytypic species" that currently comprised of five recognized forms according to the plant morphology. G. elata Blume forma elata (GEE) and G. elata Bl.f.glauca (GEG) are two common forms that naturally grow in different habitats with difference in altitude and latitude. G. elata Bl.f.viridis (GEV) often occurs sporadically in cultivated populations of GEE and GEG. However, the genetic relationships and genetic mechanism underpinned the divergent ecological adaptations of GEE and GEG have not been revealed. Here, we assembled a chromosome-level draft genome of GEE with 1.04 Gb. Among predicted 17,895 protein coding genes, we identified three HGTs. Meanwhile, we resequenced 10 GEE accessions, nine GEG accessions, and 10 GEV accessions, and identified two independent genetic lineages: GEG_pedigree (GEG individuals and GEV individuals collected from GEG populations) and GEE_pedigree (GEE individuals and GEV individuals collected from GEE populations), which strongly support the taxonomic status of GEE and GEG as subspecies, not as different forms. In highly differentiated genomic regions of GEE_pedigree and GEG_pedigree, three chalcone synthase-encoding genes and one Phox/Bem1p (PB1) domain of encoding Auxin (AUX)/Indoleacetic acid (IAA) were identified in selection sweeping genome regions, which suggested that differentiation between GEE_pedigree and GEG_pedigree was promoted by the selection of genes related to photoresponse and growth and development. Overall, this new genome would be helpful for breeding and utilization of GE and the new findings would deepen the understanding about ecological adaptation and evolution of GE.
Collapse
Affiliation(s)
- Yunsheng Wang
- School of Health and Life Science, Kaili University, Kaili, Guizhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
14
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
15
|
Rosenberg E. Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The punctuated mode of evolution posits that evolution occurs in rare bursts of rapid evolutionary change followed by long periods of genetic stability (stasis). The accepted cause for the rapid changes in punctuated evolution is special ecological circumstances – selection forces brought about by changes in the environment. This article presents a complementary explanation for punctuated evolution by the rapid formation of genetic variants in animals and plants by the acquisition of microorganisms from the environment into microbiomes and microbial genes into host genomes by horizontal gene transfer. Several examples of major evolutionary events driven by microorganisms are discussed, including the formation of the first eukaryotic cell, the ability of some animals to digest cellulose and other plant cell-wall complex polysaccharides, dynamics of root system architecture, and the formation of placental mammals. These changes by cooperation were quantum leaps in the evolutionary development of complex bilolgical systems and can contribute to an understanding of the mechanisms underlying punctuated evolution.
Collapse
|
16
|
Guo X, Wang M, Kang H, Zhou Y, Han F. Distribution, Polymorphism and Function Characteristics of the GST-Encoding Fhb7 in Triticeae. PLANTS 2022; 11:plants11162074. [PMID: 36015378 PMCID: PMC9416630 DOI: 10.3390/plants11162074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Encoding a glutathione S-transferase (GST) and conferring resistance to Fusarium head blight (FHB), Fhb7 was successfully isolated from the newly assembled Thinopyrum elongatum genome by researchers, with blasting searches revealing that Thinopyrum gained Fhb7 through horizontal gene transfer from an endophytic Epichloë species. On the contrary, our molecular evidence reveals that the homologs of Fhb7 are distributed commonly in Triticeae. Other than Thinopyrum, the Fhb7 homologs were also detected in four other genera, Elymus, Leymus, Roegneria and Pseudoroegneria, respectively. Sequence comparisons revealed that the protein sequences were at least 94% identical across all of the Fhb7 homologs in Triticeae plants, which in turn suggested that the horizontal gene transfer of the Fhb7 might have occurred before Triticeae differentiation instead of Thinopyrum. The multiple Fhb7 homologs detected in some Triticeae accessions and wheat-Thinopyrum derivatives might be attributed to the alloploid nature and gene duplication during evolution. In addition, we discovered that some wheat-Thinopyrum derivatives carrying the Fhb7 homologs had a completely different reaction to Fusarium head blight, which made us question the ability of the GST-encoding Fhb7 to resist FHB.
Collapse
Affiliation(s)
- Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
17
|
Lee KK, Kim H, Lee YH. Cross-kingdom co-occurrence networks in the plant microbiome: Importance and ecological interpretations. Front Microbiol 2022; 13:953300. [PMID: 35958158 PMCID: PMC9358436 DOI: 10.3389/fmicb.2022.953300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial co-occurrence network analysis is being widely used for data exploration in plant microbiome research. Still, challenges lie in how well these microbial networks represent natural microbial communities and how well we can interpret and extract eco-evolutionary insights from the networks. Although many technical solutions have been proposed, in this perspective, we touch on the grave problem of kingdom-level bias in network representation and interpretation. We underscore the eco-evolutionary significance of using cross-kingdom (bacterial-fungal) co-occurrence networks to increase the network's representability of natural communities. To do so, we demonstrate how ecosystem-level interpretation of plant microbiome evolution changes with and without multi-kingdom analysis. Then, to overcome oversimplified interpretation of the networks stemming from the stereotypical dichotomy between bacteria and fungi, we recommend three avenues for ecological interpretation: (1) understanding dynamics and mechanisms of co-occurrence networks through generalized Lotka-Volterra and consumer-resource models, (2) finding alternative ecological explanations for individual negative and positive fungal-bacterial edges, and (3) connecting cross-kingdom networks to abiotic and biotic (host) environments.
Collapse
Affiliation(s)
- Kiseok Keith Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song CP, Huang J. Major episodes of horizontal gene transfer drove the evolution of land plants. MOLECULAR PLANT 2022; 15:857-871. [PMID: 35235827 DOI: 10.1016/j.molp.2022.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
How horizontal gene transfer (HGT) has contributed to the evolution of animals and plants remains a major puzzle. Despite recent progress, defining the overall scale and pattern of HGT events in land plants has been largely elusive. In this study, we performed systematic analyses for acquired genes in different plant groups and throughout land plant evolution. We found that relatively recent HGT events occurred in charophytes and all major land plant groups, but their frequency declined rapidly in seed plants. Two major episodes of HGT events occurred in land plant evolution, corresponding to the early evolution of streptophytes and the origin of land plants, respectively. Importantly, a vast majority of the genes acquired in the two episodes have been retained in descendant groups, affecting numerous activities and processes of land plants. We analyzed some of the acquired genes involved in stress responses, ion and metabolite transport, growth and development, and specialized metabolism, and further assessed the cumulative effects of HGT in land plants.
Collapse
Affiliation(s)
- Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
19
|
Wu Q, Liu H, Yang Q, Wei B, Wang L, Tang Q, Wang J, Xi Y, Han C, Wang J, Li L. Developmental Transcriptome Profiling of the Tibial Reveals the Underlying Molecular Basis for Why Newly Hatched Quails Can Walk While Newly Hatched Pigeons Cannot. Front Cell Dev Biol 2022; 10:745129. [PMID: 35198553 PMCID: PMC8858812 DOI: 10.3389/fcell.2022.745129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.
Collapse
|
20
|
Schultz CJ, Wu Y, Baumann U. A targeted bioinformatics approach identifies highly variable cell surface proteins that are unique to Glomeromycotina. MYCORRHIZA 2022; 32:45-66. [PMID: 35031894 PMCID: PMC8786786 DOI: 10.1007/s00572-021-01066-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Diversity in arbuscular mycorrhizal fungi (AMF) contributes to biodiversity and resilience in natural environments and healthy agricultural systems. Functional complementarity exists among species of AMF in symbiosis with their plant hosts, but the molecular basis of this is not known. We hypothesise this is in part due to the difficulties that current sequence assembly methodologies have assembling sequences for intrinsically disordered proteins (IDPs) due to their low sequence complexity. IDPs are potential candidates for functional complementarity because they often exist as extended (non-globular) proteins providing additional amino acids for molecular interactions. Rhizophagus irregularis arabinogalactan-protein-like proteins (AGLs) are small secreted IDPs with no known orthologues in AMF or other fungi. We developed a targeted bioinformatics approach to identify highly variable AGLs/IDPs in RNA-sequence datasets. The approach includes a modified multiple k-mer assembly approach (Oases) to identify candidate sequences, followed by targeted sequence capture and assembly (mirabait-mira). All AMF species analysed, including the ancestral family Paraglomeraceae, have small families of proteins rich in disorder promoting amino acids such as proline and glycine, or glycine and asparagine. Glycine- and asparagine-rich proteins also were found in Geosiphon pyriformis (an obligate symbiont of a cyanobacterium), from the same subphylum (Glomeromycotina) as AMF. The sequence diversity of AGLs likely translates to functional diversity, based on predicted physical properties of tandem repeats (elastic, amyloid, or interchangeable) and their broad pI ranges. We envisage that AGLs/IDPs could contribute to functional complementarity in AMF through processes such as self-recognition, retention of nutrients, soil stability, and water movement.
Collapse
Affiliation(s)
- Carolyn J Schultz
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia.
| | - Yue Wu
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Ute Baumann
- School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Dallaire A, Manley BF, Wilkens M, Bista I, Quan C, Evangelisti E, Bradshaw CR, Ramakrishna NB, Schornack S, Butter F, Paszkowski U, Miska EA. Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis. Genome Res 2021; 31:2290-2302. [PMID: 34772700 PMCID: PMC8647823 DOI: 10.1101/gr.275752.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.
Collapse
Affiliation(s)
- Alexandra Dallaire
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Bethan F Manley
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Maya Wilkens
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iliana Bista
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Clement Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Edouard Evangelisti
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Navin B Ramakrishna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Uta Paszkowski
- Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, United Kingdom
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
22
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
23
|
Ku YS, Wang Z, Duan S, Lam HM. Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe-Plant Interactions. BIOLOGY 2021; 10:biology10060477. [PMID: 34071379 PMCID: PMC8227670 DOI: 10.3390/biology10060477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary Rhizosphere, where microbes and plants coexist, is a hotspot of mobile genetic element (MGE) transfers. It was suggested that ancient MGE transfers drove the evolution of both microbes and plants. On the other hand, recurrent MGE transfers regulate microbe-plant interaction and the adaptation of microbes and plants to the environment. The studies of MGE transfers in the rhizosphere provide useful information for the research on pathogenic/ beneficial microbe-plant interaction. In addition, MGE transfers between microbes and the influence by plant root exudates on such transfers provide useful information for the research on bioremediation. Abstract The transfer of mobile genetic elements (MGEs) has been known as a strategy adopted by organisms for survival and adaptation to the environment. The rhizosphere, where microbes and plants coexist, is a hotspot of MGE transfers. In this review, we discuss the classic mechanisms as well as novel mechanisms of MGE transfers in the rhizosphere. Both intra-kingdom and cross-kingdom MGE transfers will be addressed. MGE transfers could be ancient events which drove evolution or recurrent events which regulate adaptations. Recent findings on MGE transfers between plant and its interacting microbes suggest gene regulations brought forth by such transfers for symbiosis or defense mechanisms. In the natural environment, factors such as temperature and soil composition constantly influence the interactions among different parties in the rhizosphere. In this review, we will also address the effects of various environmental factors on MGE transfers in the rhizosphere. Besides environmental factors, plant root exudates also play a role in the regulation of MGE transfer among microbes in the rhizosphere. The potential use of microbes and plants for bioremediation will be discussed.
Collapse
|
24
|
Xi Y, Xu Q, Huang Q, Ma S, Wang Y, Han C, Zhang R, Wang J, Liu H, Li L. Genome-wide association analysis reveals that EDNRB2 causes a dose-dependent loss of pigmentation in ducks. BMC Genomics 2021; 22:381. [PMID: 34034661 PMCID: PMC8146663 DOI: 10.1186/s12864-021-07719-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Birds have various plumage color patterns, and spot is a common phenotype. Herein, we conducted genome-wide association studies (GWAS) in a population of 225 ducks with different sized black spots to reveal the genetic basis of this phenomenon. Results First, we quantified the black spot phenotype within the duck population. The results showed that the uncolored area of the body surface first appeared on the ventral side. With increasing duck age, the area of the black spots was highly conserved across the whole body surface. The GWAS results identified a 198 kb (Chr4: 10,149,651 bp to 10,348,068 bp) genetic region that was significantly associated with the black spot phenotype. The conditional GWAS and linkage disequilibrium (LD) analysis further narrowed the ultimate candidate region to 167 kb (Chr4: 10,180,939 bp to 10,348,068 bp). A key gene regulating melanoblast migration and differentiation, EDNRB2 (Endothelin B receptor-like), was found in the candidate region and having significant mRNA expression level changes in embryonic duck skin tissue with different spot sizes. The significant SNPs (single nucleotide polymorphisms) associated with the EDNRB2 gene were annotated, and two mutations (Chr4: 10,180,939 T > C and Chr4: 10,190,671 A > T) were found to result in the loss of binding sites for two trans-factors, XBP1 and cMYB. The phenotypic effect of these two mutations suggested that they can regulate the size of black spots in a dose-dependent manner, and Chr4: 10,180,939 T > C was the major allele locus. Conclusions Our results revealed that EDNRB2 was the gene responsible for the variation in duck body surface spot size. Chr4: 10,180,939 T > C was the major allele that explained 49.5 % (dorsal side) and 32.9 % (ventral side) of the variation in duck body surface spot size, while 32.1 % (dorsal side) and 19.1 % (ventral side) of the variation could be explained by Chr4: 10,190,671 A > T. The trans-factor prediction also suggested that XBP1 and cMYB have the potential to interact with EDNRB2, providing new insights into the mechanism of action of these genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07719-7.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qin Huang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
25
|
Zilber-Rosenberg I, Rosenberg E. Microbial driven genetic variation in holobionts. FEMS Microbiol Rev 2021; 45:6261188. [PMID: 33930136 DOI: 10.1093/femsre/fuab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in holobionts, (host and microbiome), occurring by changes in both host and microbiome genomes, can be observed from two perspectives: observable variations and the processes that bring about the variation. The observable includes the enormous genetic diversity of prokaryotes, which gave rise to eukaryotic organisms. Holobionts then evolved a rich microbiome with a stable core containing essential genes, less so common taxa, and a more diverse non-core enabling considerable genetic variation. The result being that, the human gut microbiome, for example, contains 1,000 times more unique genes than are present in the human genome. Microbial driven genetic variation processes in holobionts include: (1) Acquisition of novel microbes from the environment, which bring in multiple genes in one step, (2) amplification/reduction of certain microbes in the microbiome, that contribute to holobiont` s adaptation to changing conditions, (3) horizontal gene transfer between microbes and between microbes and host, (4) mutation, which plays an important role in optimizing interactions between different microbiota and between microbiota and host. We suggest that invertebrates and plants, where microbes can live intracellularly, have a greater chance of genetic exchange between microbiota and host, thus a greater chance of vertical transmission and a greater effect of microbiome on evolution of host than vertebrates. However, even in vertebrates the microbiome can aid in environmental fluctuations by amplification/reduction and by acquisition of novel microorganisms.
Collapse
Affiliation(s)
- Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| | - Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| |
Collapse
|
26
|
Transcriptome reveals genes involving in black skin color formation of ducks. Genes Genomics 2021; 43:173-182. [PMID: 33528733 DOI: 10.1007/s13258-020-01026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skin color is colorful for birds, which has been reported to be associated with multi-biological functions, such as crypsis, camouflage, social signaling and mate choice, but little is known about its underlying molecular mechanism. OBJECTIVE Studies on the major genes affecting the black skin color of ducks. METHODS For this purpose, Silver ammonia staining and RNA-seq analysis were carried out to identify the differences in tissue morphology and gene expressions between black and yellow skin ducks. RESULTS The silver ammonia dyes slice results showed that in the development of black duck, the content of melanin in black skin gradually increased and then decreased, and the content of melanin in yellow and black skin was significantly different. Through transcriptome, a total of 102 and 84 differentially expressed genes (DEGs) were identified in beak skin and web skin, respectively. These DEGs were enriched in melanin biosynthesis and play a critical role in melanogenesis pathway. Co-expression analysis showed that EDNRB2 was the only gene associated with black skin color in DEGs, which was also consistent with qRT-PCR. CONCLUSIONS The melanin synthesis pathway dominated by EDNRB2 up-regulated the amount of melanin synthesis, leading to the formation of black skin in ducks.
Collapse
|
27
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
28
|
Abrashev R, Krumova E, Petrova P, Eneva R, Kostadinova N, Miteva-Staleva J, Engibarov S, Stoyancheva G, Gocheva Y, Kolyovska V, Dishliyska V, Spassova B, Angelova M. Distribution of a novel enzyme of sialidase family among native filamentous fungi. Fungal Biol 2021; 125:412-425. [PMID: 33910682 DOI: 10.1016/j.funbio.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. . Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.
Collapse
Affiliation(s)
- Radoslav Abrashev
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Ekaterina Krumova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Penka Petrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Nedelina Kostadinova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Jeni Miteva-Staleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Stephan Engibarov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Galina Stoyancheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Yana Gocheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Vera Kolyovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Academician G. Bonchev 25, 1113 Sofia, Bulgaria
| | - Vladislava Dishliyska
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Boryana Spassova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria
| | - Maria Angelova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev 26, 1113, Sofia, Bulgaria.
| |
Collapse
|
29
|
Mycosynthesis of novel lactone in foliar endophytic fungus isolated from Bixa orellana L. 3 Biotech 2021; 11:33. [PMID: 33457167 DOI: 10.1007/s13205-020-02566-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023] Open
Abstract
There is a colossal demand for natural pigments and its applications in recent times. In the study, a novel lactone pigment was isolated from a predominant endophytic fungus residing in Bixa orellana L. (Bixaceae) leaves. The endophyte was identified as Fusarium verticillioides through morphological and molecular investigations. The optimum growth parameters of the endophyte for pigment production were at 33 ºC with pH 6.5 in dark. Through comprehensive spectroscopic studies, the structure of the isolated lactone was resolved and identified as (E)-3, 3-dimethyl-4-(pent-1-en-1-yl)-4-propyldihydrofuran-2(3H)-one. The acute oral toxicity study of the pigment investigated upon female Wistar rats indicated the median lethal dose (LD50) value above 1000 mg/kg body weight affirming safety. Thus, the red pigment from the isolated endophyte may be employed as a sustainable source for natural colorant in industries owing to its non-toxicity. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02566-x.
Collapse
|
30
|
Zhang J, Meng L, Zhang Y, Sang L, Liu Q, Zhao L, Liu F, Wang G. GapB Is Involved in Biofilm Formation Dependent on LrgAB but Not the SinI/R System in Bacillus cereus 0-9. Front Microbiol 2020; 11:591926. [PMID: 33365021 PMCID: PMC7750190 DOI: 10.3389/fmicb.2020.591926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus cereus 0-9, a Gram-positive endospore-forming bacterium isolated from healthy wheat roots, has biological control capacity against several soil-borne plant diseases of wheat such as sharp eyespot and take-all. The bacterium can produce various biofilms that differ in their architecture and formation mechanisms, possibly for adapting to different environments. The gapB gene, encoding a glyceraldehyde-3-phosphate dehydrogenase (GAPDH), plays a key role in B. cereus 0-9 biofilm formation. We studied the function of GapB and the mechanism of its involvement in regulating B. cereus 0-9 biofilm formation. GapB has GAPDH activities for both NAD+- and NADP+-dependent dehydrogenases and is a key enzyme in gluconeogenesis. Biofilm yield of the ΔgapB strain decreased by 78.5% compared with that of wild-type B. cereus 0-9 in lysogeny broth supplemented with some mineral salts (LBS), and the ΔgapB::gapB mutants were recovered with gapB gene supplementation. Interestingly, supplementing the LBS medium with 0.1-0.5% glycerol restored the biofilm formation capacity of the ΔgapB mutants. Therefore, GapB regulates biofilm formation relative to its function in gluconeogenesis. To illustrate how GapB is involved in regulating biofilm formation through gluconeogenesis, we carried out further research. The results indicate that the GapB regulated the B. cereus 0-9 biofilm formation independently of the exopolysaccharides and regulatory proteins in the typical SinI/R system, likely owing to the release of extracellular DNA in the matrix. Transcriptome analysis showed that the gapB deletion caused changes in the expression levels of only 18 genes, among which, lrgAB was the most significantly increased by 6.17-fold. We confirmed this hypothesis by counting the dead and living cells in the biofilms and found the number of living cells in the biofilm formed by the ΔgapB strain was nearly 7.5 times than that of wild-type B. cereus 0-9. Therefore, we concluded that the GapB is involved in the extracellular DNA release and biofilm formation by regulating the expression or activities of LrgAB. These results provide a new insight into the regulatory mechanism of bacterial biofilm formation and a new foundation for further studying the stress resistance of B. cereus.
Collapse
Affiliation(s)
- Juanmei Zhang
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China.,School of Pharmaceutical, Henan University, Kaifeng, China
| | - Li Meng
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yubing Zhang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lidan Sang
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Zhao
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fengying Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Gang Wang
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, China.,Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
31
|
Venice F, Desirò A, Silva G, Salvioli A, Bonfante P. The Mosaic Architecture of NRPS-PKS in the Arbuscular Mycorrhizal Fungus Gigaspora margarita Shows a Domain With Bacterial Signature. Front Microbiol 2020; 11:581313. [PMID: 33329443 PMCID: PMC7732545 DOI: 10.3389/fmicb.2020.581313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
As obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association with most land plants. Among them, Gigaspora margarita has been deeply investigated because of its peculiar features, i.e., the presence of an intracellular microbiota with endobacteria and viruses. The genome sequencing of this fungus revealed the presence of some hybrid non-ribosomal peptide synthases-polyketide synthases (NRPS-PKS) that have been rarely identified in AMF. The aim of this study is to describe the architecture of these NRPS-PKS sequences and to understand whether they are present in other fungal taxa related to G. margarita. A phylogenetic analysis shows that the ketoacyl synthase (KS) domain of one G. margarita NRPS-PKS clusters with prokaryotic sequences. Since horizontal gene transfer (HGT) has often been advocated as a relevant evolutionary mechanism for the spread of secondary metabolite genes, we hypothesized that a similar event could have interested the KS domain of the PKS module. The bacterial endosymbiont of G. margarita, Candidatus Glomeribacter gigasporarum (CaGg), was the first candidate as a donor, since it possesses a large biosynthetic cluster involving an NRPS-PKS. However, bioinformatics analyses do not confirm the hypothesis of a direct HGT from the endobacterium to the fungal host: indeed, endobacterial and fungal sequences show a different evolution and potentially different donors. Lastly, by amplifying a NRPS-PKS conserved fragment and mining the sequenced AMF genomes, we demonstrate that, irrespective of the presence of CaGg, G. margarita, and some other related Gigasporaceae possess such a sequence.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Turin, Italy
| | - Alessandro Desirò
- Department of Plant, Soil and Microbial Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Gladstone Silva
- Department of Mycology, Federal University of Pernambuco, Recife, Brazil
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Sun G, Bai S, Guan Y, Wang S, Wang Q, Liu Y, Liu H, Goffinet B, Zhou Y, Paoletti M, Hu X, Haas FB, Fernandez-Pozo N, Czyrt A, Sun H, Rensing SA, Huang J. Are fungi-derived genomic regions related to antagonism towards fungi in mosses? THE NEW PHYTOLOGIST 2020; 228:1169-1175. [PMID: 32578878 DOI: 10.1111/nph.16776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/19/2020] [Indexed: 05/16/2023]
Affiliation(s)
- Guiling Sun
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yang Liu
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, 518004, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bernard Goffinet
- Ecology and Evolutionary Biology, University of Connecticut, 75N Eagleville Rd, Storrs, CT, 06269-3043, USA
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Mathieu Paoletti
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS-Université de Bordeaux 2, 1 rue Camille St Saëns, Bordeaux Cedex, 33077, France
| | - Xiangyang Hu
- College of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Alia Czyrt
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Biology, East Carolina University, Greenville, NC, 28590, USA
| |
Collapse
|
33
|
Yang Y, Zhang Z, Wan M, Wang Z, Zou X, Zhao Y, Sun L. A Facile Method for the Fabrication of Silver Nanoparticles Surface Decorated Polyvinyl Alcohol Electrospun Nanofibers and Controllable Antibacterial Activities. Polymers (Basel) 2020; 12:E2486. [PMID: 33114708 PMCID: PMC7693976 DOI: 10.3390/polym12112486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Polyvinyl alcohol (PVA) electrospun nanofibers (NFs) are ideal carriers for loading silver nanoparticles (Ag NPs) serving as antibacterial materials. However, it is still a challenge to adjust the particles size, distribution, and loading density via a convenient and facile method in order to obtain tunable structure and antimicrobial activities. In this study, Ag NPs surface decorated PVA composite nanofibers (Ag/PVA CNFs) were fabricated by the solvothermal method in ethylene glycol, which plays the roles of both reductant and solvent. The morphology and structure of the as-fabricated Ag/PVA CNFs were characterized by scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. Ag NPs had an average diameter of 30 nm, the narrowest size distribution and the highest loading density were successfully decorated on the surfaces of PVA NFs, at the AgNO3 concentration of 0.066 mol/L. The antibacterial properties were evaluated by the methods of absorption, turbidity, and growth curves. The as-fabricated Ag/PVA hybrid CNFs exhibit excellent antimicrobial activities with antibacterial rates over 98%, especially for the sample prepared with AgNO3 concentration of 0.066 mol/L. Meanwhile, the antibacterial effects are more significant in the Gram-positive bacteria of Staphylococcus aureus (S. aureus) than the Gram-negative bacteria of Escherichia coli (E. coli), since PVA is more susceptive to S. aureus. In summary, the most important contribution of this paper is the discovery that the particles size, distribution, and loading density of Ag NPs on PVA NFs can be easily controlled by adjusting AgNO3 concentrations, which has a significant impact on the antibacterial activities of Ag/PVA CNFs.
Collapse
Affiliation(s)
- Yan Yang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (Y.Y.); (M.W.); (X.Z.); (Y.Z.)
| | - Zhijie Zhang
- Ministry of Education Key Laboratory of Advanced Civil Engineering Material, School of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai 201804, China;
| | - Menghui Wan
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (Y.Y.); (M.W.); (X.Z.); (Y.Z.)
| | - Zhihua Wang
- Henan Engineering Research Center of Industrial Circulating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xueyan Zou
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (Y.Y.); (M.W.); (X.Z.); (Y.Z.)
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (Y.Y.); (M.W.); (X.Z.); (Y.Z.)
| | - Lei Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China; (Y.Y.); (M.W.); (X.Z.); (Y.Z.)
| |
Collapse
|
34
|
Xi Y, Liu H, Li L, Xu Q, Liu Y, Wang L, Ma S, Wang J, Bai L, Zhang R, Han C. Transcriptome Reveals Multi Pigmentation Genes Affecting Dorsoventral Pattern in Avian Body. Front Cell Dev Biol 2020; 8:560766. [PMID: 33117797 PMCID: PMC7559526 DOI: 10.3389/fcell.2020.560766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Certain animals exhibit a special dorsoventral pattern with a lighter ventral side compared to the dorsal one and this phenomenon was preserved in the long-term evolution process. Birds also retain this trait. Recently, Inaba et al. (2019) found that ASIP (agouti signal protein) regulated interconversion between different melanocyte types leads to dorsal stripe pattern, which may partly explain the birds' dorsoventral plumage color difference. In this study, we used the embryo samples of LBM (light brown mottling) ducks (Anas platyrhynchos) with white ventral and dark dorsal body parts to investigate the mechanism of dorsoventral color variation. Firstly, melanin deposition process of duck embryos was investigated. The result indicated that E13 and E16 were the active stages of melanin synthesis. Moreover, the melanin deposition on the dorsum of LBM ducks was higher than that on the ventral side throughout. Then, RNA-seq was conducted for the dorsal and ventral skin tissues from E7 (early), E13 (middle) and E19 (late) of LBM ducks. Expression pattern analysis showed that the mRNA expression of most melanin synthesis related genes were at the highest level at E13, which was consistent with the section analysis. A correlation was found between melanogenesis pathway and dorsoventral color difference by co-expression analysis. In the DEG (differentially expressed gene) analysis, we added the dorsal skin transcriptome of embryonic white and black duck of same subspecies (Anas platyrhynchos domestica) for horizontal comparison. The results showed that 8 melanogenesis related genes (TYR, TYRP1, MLANA, RAB38, OCA2, TSPAN10, MC1R, and MSLN) were the common DEGs (Differential expressed genes) in the comparisons of body parts and breeds suggesting that the underlying molecular regulatory mechanism of dorsoventral plumage color difference may be similar to that of albino and melanic duck, which were caused by the different expression of multiple genes in melanin synthesis pathway. In addition, the molecular regulation of melanin synthesis pathway in the dorsal and ventral side of LBM ducks was analyzed. In this pathway, ASIP, MC1R, TYR, and TYRP1 have differential mRNA expression. ASIP, as an upstream gene in this pathway, was likely to play a decisive role in determining the dorsoventral plumage pattern.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The YmdB protein regulates biofilm formation dependent on the repressor SinR in Bacillus cereus 0-9. World J Microbiol Biotechnol 2020; 36:165. [PMID: 33000364 DOI: 10.1007/s11274-020-02933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
YmdB, which can regulate biofilm formation independently, has been reported to exist in Bacillus subtilis. The B. cereus 0-9 genome also encodes a YmdB-like protein, which has measureable phosphodiesterase activity, and 72.35% sequence identity to YmdB protein of B. subtilis 168. In this work, we studied the function of YmdB protein and its encoding gene, ymdB, in B. cereus 0-9. Our results indicated that YmdB protein is critical for the biofilm formation of B. cereus 0-9. In ΔymdB mutant, the transcriptional levels of sinR and hag were up-regulated, and those of genes closely related to biofilm formation, such as sipW, tasA and calY, were down-regulated. Deletion of ymdB gene stimulates the swarming motility of B. cereus 0-9, and enhances it to travel outward, but reduces its ability to form complex spatial structures on the solid surface of MSgg plates. Hence, it is considered that YmdB plays a key role in biofilm formation, and this effect is likely achieved through the function of repressor SinR in B. cereus 0-9. Furthermore, by comparing the amino acid sequences of YmdB by Basic Local Alignment Search Tool (BLAST) in Genebank, we found that YmdB homologues are present in a variety of bacteria (Including Gram-negative bacteria) except B. subtilis and B. cereus. All these bacteria come at different evolutionary distances and belong to different genera. Therefore, we believe that YmdB exists in many types of bacteria and plays an important role in the stress-resistance of bacteria to adapt to the environment. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9.
Collapse
|
36
|
Abstract
Diversity within the fungal kingdom is evident from the wide range of morphologies fungi display as well as the various ecological roles and industrial purposes they serve. Technological advances, particularly in long-read sequencing, coupled with the increasing efficiency and decreasing costs across sequencing platforms have enabled robust characterization of fungal genomes. These sequencing efforts continue to reveal the rampant diversity in fungi at the genome level. Here, we discuss studies that have furthered our understanding of fungal genetic diversity and genomic evolution. These studies revealed the presence of both small-scale and large-scale genomic changes. In fungi, research has recently focused on many small-scale changes, such as how hypermutation and allelic transmission impact genome evolution as well as how and why a few specific genomic regions are more susceptible to rapid evolution than others. High-throughput sequencing of a diverse set of fungal genomes has also illuminated the frequency, mechanisms, and impacts of large-scale changes, which include chromosome structural variation and changes in chromosome number, such as aneuploidy, polyploidy, and the presence of supernumerary chromosomes. The studies discussed herein have provided great insight into how the architecture of the fungal genome varies within species and across the kingdom and how modern fungi may have evolved from the last common fungal ancestor and might also pave the way for understanding how genomic diversity has evolved in all domains of life.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| |
Collapse
|
37
|
|
38
|
Wu H, Chen Q, Jiao M, Xia X, Lian X, Huang N, Li K, Yin J, Shi B. Evaluation of nanomechanical properties of hyperbranched polyglycerols as prospective cell membrane engineering block. Colloids Surf B Biointerfaces 2020; 190:110968. [DOI: 10.1016/j.colsurfb.2020.110968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
|
39
|
|
40
|
A mycorrhizae-like gene regulates stem cell and gametophore development in mosses. Nat Commun 2020; 11:2030. [PMID: 32332755 PMCID: PMC7181705 DOI: 10.1038/s41467-020-15967-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plant colonization of land has been intimately associated with mycorrhizae or mycorrhizae-like fungi. Despite the pivotal role of fungi in plant adaptation, it remains unclear whether and how gene acquisition following fungal interaction might have affected the development of land plants. Here we report a macro2 domain gene in bryophytes that is likely derived from Mucoromycota, a group that includes some mycorrhizae-like fungi found in the earliest land plants. Experimental and transcriptomic evidence suggests that this macro2 domain gene in the moss Physcomitrella patens, PpMACRO2, is important in epigenetic modification, stem cell function, cell reprogramming and other processes. Gene knockout and over-expression of PpMACRO2 significantly change the number and size of gametophores. These findings provide insights into the role of fungal association and the ancestral gene repertoire in the early evolution of land plants.
Collapse
|
41
|
Tiwari P, Bae H. Horizontal Gene Transfer and Endophytes: An Implication for the Acquisition of Novel Traits. PLANTS (BASEL, SWITZERLAND) 2020; 9:E305. [PMID: 32121565 PMCID: PMC7154830 DOI: 10.3390/plants9030305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Horizontal gene transfer (HGT), an important evolutionary mechanism observed in prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and highlighted its emerging role in the adaptation and evolution of eukaryotes. Endophytes represent an ecologically favored association, which highlights its beneficial attributes to the environment, in agriculture and in healthcare. The HGT phenomenon in endophytes, which features an important biological mechanism for their evolutionary adaptation within the host plant and simultaneously confers "novel traits" to the associated microbes, is not yet completely understood. With a focus on the emerging implications of HGT events in the evolution of biological species, the present review discusses the occurrence of HGT in endophytes and its socio-economic importance in the current perspective. To our knowledge, this review is the first report that provides a comprehensive insight into the impact of HGT in the adaptation and evolution of endophytes.
Collapse
Affiliation(s)
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
42
|
Bu C, Zhang Q, Zeng J, Cao X, Hao Z, Qiao D, Cao Y, Xu H. Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1. BMC Genomics 2020; 21:29. [PMID: 31914922 PMCID: PMC6950803 DOI: 10.1186/s12864-019-6442-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.
Collapse
Affiliation(s)
- Congfan Bu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Qian Zhang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Zhaonan Hao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| |
Collapse
|
43
|
Zhang J, Wang H, Huang Q, Zhang Y, Zhao L, Liu F, Wang G. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. World J Microbiol Biotechnol 2020; 36:12. [PMID: 31897767 DOI: 10.1007/s11274-019-2786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/14/2019] [Indexed: 10/25/2022]
Abstract
Superoxide dismutases (SODs) have been shown to exhibit high levels of conservation and exist in almost all aerobic organisms and even many strict anaerobes. There are four SODs in Bacillus cereus 0-9, and this coexistence of multiple homologous enzymes is of great significance in the evolution of bacteria. We hypothesized that the four sod genes in B. cereus 0-9 constituted non-redundant protection against oxidative damage in vivo and played unique roles in the pathogenicity of B. cereus 0-9 during different phases or growth environments. To test this hypothesis, we constructed four single-knockout mutants (∆sodA1, ∆sodA2, ∆sodS, and ∆sodC) and a mutant lacking all four sod genes (∆sod-4) of B. cereus 0-9 and assessed their various phenotypes. Our results indicated that sodA1 plays a major role in tolerance to intracellular oxidative stress and spore formation. The ∆sodA1 and ∆sod-4 mutants were very sensitive to oxidants. The spore formation of the ∆sodA1 mutant was dramatically delayed, and the ∆sod-4 mutant did not form any spores under our experimental conditions. The sodA2 gene may play an important role in negative regulation of swarming motility, pathogenicity, and phospholipase and haemolytic activity of B. cereus but also a role in positive regulation of biofilm formation under our experimental conditions. The other two genes, sodS and sodC, were key to the pathogenicity of B. cereus. The lethal rates of Helicoverpa armigera infected by the ∆sodS and ∆sodC mutants were only 26.67%, while wild-type B. cereus 0-9 caused lethality in up to 86.67% of the insects at 24 h after injection. Moreover, the ∆sod-4 mutant caused a reduced death rate of H. armigera of 46.70%, which was slightly higher than that caused by the ∆sodS and ∆sodC strains. Thus, these four sod genes were non-redundant for oxidative stress and may play different additional roles in B. cereus 0-9. These results can help us to further understand the biocontrol characteristics of B. cereus 0-9 and lay a theoretical foundation for further research.
Collapse
Affiliation(s)
- Juanmei Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,Pharmaceutical College, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Haodong Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Qiubin Huang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Ying Zhang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Linlin Zhao
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Fengying Liu
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China.,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China
| | - Gang Wang
- Institute of Microbial Engineering, Henan University, Kaifeng, 475004, Henan, People's Republic of China. .,School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
44
|
Tracing the mass flow from glucose and phenylalanine to pinoresinol and its glycosides in Phomopsis sp. XP-8 using stable isotope assisted TOF-MS. Sci Rep 2019; 9:18495. [PMID: 31811180 PMCID: PMC6897942 DOI: 10.1038/s41598-019-54836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/19/2019] [Indexed: 11/26/2022] Open
Abstract
Phomopsis sp. XP-8, an endophytic fungus from the bark of Tu-Chung (Eucommia ulmoides Oliv) showed capability to biosynthesize pinoresinol (Pin) and pinoresinol diglucoside (PDG) from glucose (glu) and phenylalanine (Phe). To verify the mass flow in the biosynthesis pathway, [13C6]-labeled glu and [13C6]-labeled Phe were separately fed to the strain as sole substrates and [13C6]-labeled products were detected by ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry. As results, [13C6]-labeled Phe was incorporated into [13C6]-cinnamylic acid (Ca) and p-coumaric acid (p-Co), and [13C12]-labeled Pin, which revealed that the Pin benzene ring came from Phe via the phenylpropane pathway. [13C6]-Labeled Ca and p-Co, [13C12]-labeled Pin, [13C18]-labeled pinoresinol monoglucoside (PMG), and [13C18]-labeled PDG products were found when [13C6]-labeled glu was used, demonstrating that the benzene ring and glucoside of PDG originated from glu. It was also determined that PMG was not the direct precursor of PDG in the biosynthetic pathway. The study identified the occurrence of phenylalanine- lignan biosynthesis pathway in fungi at the level of mass flow.
Collapse
|
45
|
Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xianan X, Sędzielewska Toro K, Morin E, Lipzen A, Grigoriev IV, Henrissat B, Martin FM, Bonfante P. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol 2019; 22:122-141. [PMID: 31621176 DOI: 10.1111/1462-2920.14827] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023]
Abstract
As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF, Glomeromycotina) symbiotically colonize plant roots. AMF also possess their own microbiota, hosting some uncultivable endobacteria. Ongoing research has revealed the genetics underlying plant responses to colonization by AMF, but the fungal side of the relationship remains in the dark. Here, we sequenced the genome of Gigaspora margarita, a member of the Gigasporaceae in an early diverging group of the Glomeromycotina. In contrast to other AMF, G. margarita may host distinct endobacterial populations and possesses the largest fungal genome so far annotated (773.104 Mbp), with more than 64% transposable elements. Other unique traits of the G. margarita genome include the expansion of genes for inorganic phosphate metabolism, the presence of genes for production of secondary metabolites and a considerable number of potential horizontal gene transfer events. The sequencing of G. margarita genome reveals the importance of its immune system, shedding light on the evolutionary pathways that allowed early diverging fungi to interact with both plants and bacteria.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection-CNR, Turin Unit, Turin, Italy
| | | | | | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Xie Xianan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory of Innovation and Utilization of Forest Plant Germplasm in Guangdong Province, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kinga Sędzielewska Toro
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE), UMR, 1136, Champenoux, France
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
46
|
Rahman F, Hassan M, Hanano A, Fitzpatrick DA, McCarthy CGP, Murphy DJ. Evolutionary, structural and functional analysis of the caleosin/peroxygenase gene family in the Fungi. BMC Genomics 2018; 19:976. [PMID: 30593269 PMCID: PMC6309107 DOI: 10.1186/s12864-018-5334-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Caleosin/peroxygenases, CLO/PXG, (designated PF05042 in Pfam) are a group of genes/proteins with anomalous distributions in eukaryotic taxa. We have previously characterised CLO/PXGs in the Viridiplantae. The aim of this study was to investigate the evolution and functions of the CLO/PXGs in the Fungi and other non-plant clades and to elucidate the overall origin of this gene family. RESULTS CLO/PXG-like genes are distributed across the full range of fungal groups from the basal clades, Cryptomycota and Microsporidia, to the largest and most complex Dikarya species. However, the genes were only present in 243 out of 844 analysed fungal genomes. CLO/PXG-like genes have been retained in many pathogenic or parasitic fungi that have undergone considerable genomic and structural simplification, indicating that they have important functions in these species. Structural and functional analyses demonstrate that CLO/PXGs are multifunctional proteins closely related to similar proteins found in all major taxa of the Chlorophyte Division of the Viridiplantae. Transcriptome and physiological data show that fungal CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression and are upregulated in response to a range of biotic and abiotic stresses as well as participating in key metabolic and developmental processes such as lipid metabolism, signalling, reproduction and pathogenesis. Biochemical data also reveal that the Aspergillus flavus CLO/PXG has specific functions in sporulation and aflatoxin production as well as playing roles in lipid droplet function. CONCLUSIONS In contrast to plants, CLO/PXGs only occur in about 30% of sequenced fungal genomes but are present in all major taxa. Fungal CLO/PXGs have similar but not identical roles to those in plants, including stress-related oxylipin signalling, lipid metabolism, reproduction and pathogenesis. While the presence of CLO/PXG orthologs in all plant genomes sequenced to date would suggest that they have core housekeeping functions in plants, the selective loss of CLO/PXGs in many fungal genomes suggests more restricted functions in fungi as accessory genes useful in particular environments or niches. We suggest an ancient origin of CLO/PXG-like genes in the 'last eukaryotic common ancestor' (LECA) and their subsequent loss in ancestors of the Metazoa, after the latter had diverged from the ancestral fungal lineage.
Collapse
Affiliation(s)
- Farzana Rahman
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL UK
| | - Mehedi Hassan
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
| | | | | | - Denis J. Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL UK
| |
Collapse
|
47
|
Affiliation(s)
- Yong Guo
- College of Agriculture, Ibaraki University3–21–1 Chuuo, Ami, Inashiki, Ibaraki 300–0393Japan
| | - Kazuhiko Narisawa
- College of Agriculture, Ibaraki University3–21–1 Chuuo, Ami, Inashiki, Ibaraki 300–0393Japan
| |
Collapse
|