1
|
Zhao Z, Zhang G, Yu H, Sun G, Zhu J. Identification of core candidate genes responding to Verticillium wilt (Verticillium dahliae) in cotton via integrated methods. Int J Biol Macromol 2025; 306:141038. [PMID: 39978513 DOI: 10.1016/j.ijbiomac.2025.141038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Cotton is a vital natural fiber and oil crop, yet it is severely affected by verticillium wilt (VW), known as the 'cancer' of cotton, hindering the industry's sustainable development. Upland cotton, which is widely cultivated, lacks effective resistance to VW, while most sea island cotton shows strong resistance. In this study, an F2:3 population was constructed by hybridizing the verticillium wilt-resistant island cotton variety 'Hai7124' with the susceptible variety 'Xinhai14'. Using Bulked Segregant Analysis (BSA-seq), we identified 10 genetic intervals significantly associated with resistance. Additionally, two pathogenic strains of Verticillium dahliae, Vd592 (a strong pathogenic type) and VdKT (a weak pathogenic type), were used to infect the 'Hai7124' and 'Xinhai14' for RNA-seq analysis, focusing on differentially expressed genes and signaling pathways in samples treated with different resistant and susceptible materials and infected with different pathogens. By integrating BSA-seq and RNA-seq association analyses, the candidate gene range was further refined. Five genes (GBMYB102, GBWRKY65, GBRDA2, GBSOT16, and GBCWINV1) were validated through virus-induced gene silencing (VIGS). The results revealed that reduced expression of these genes significantly decreases plant disease resistance and leads to a reduction in the activity of defense-related enzymes (such as SOD, CAT or PAL) and secondary metabolites (including lignin or flavonoids). Based on the preliminary functional analysis of these candidate genes, we speculate that redox metabolism and secondary metabolites play crucial roles in the resistance of island cotton to Verticillium wilt, and that the resistance of island cotton to verticillium wilt is the result of multiple genes working together.
Collapse
Affiliation(s)
- Zengqiang Zhao
- College of Life Sciences, Shihezi University, Shihezi, China; Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China; Key Laboratory of Cotton Biology and Genetic Breeding in Northwest Inland Region of the Ministry of Agriculture (Xinjiang), Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoli Zhang
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hang Yu
- Xinjiang Production & Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China.
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Song G, Montes C, Olatunji D, Malik S, Ji C, Clark NM, Pu Y, Kelley DR, Walley JW. Quantitative proteomics reveals extensive lysine ubiquitination and transcription factor stability states in Arabidopsis. THE PLANT CELL 2024; 37:koae310. [PMID: 39570863 DOI: 10.1093/plcell/koae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Protein activity, abundance, and stability can be regulated by post-translational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function; yet, we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich ubiquitinated peptides coupled with isobaric labeling to enable quantification of up to 18-multiplexed samples. This approach identified 17,940 ubiquitinated lysine sites arising from 6,453 proteins from Arabidopsis (Arabidopsis thaliana) primary roots, seedlings, and rosette leaves. Gene ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and metabolism. We determined ubiquitinated lysine residues that directly regulate the stability of three transcription factors, CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) using in vivo degradation assays. Furthermore, codon mutation of CIB1 to create a K166R conversion to prevent ubiquitination, via CRISPR/Cas9-derived adenosine base editing, led to an early flowering phenotype and increased expression of FLOWERING LOCUS T (FT). These comprehensive site-level ubiquitinome profiles provide a wealth of data for future functional studies related to modulation of biological processes mediated by this post-translational modification in plants.
Collapse
Affiliation(s)
- Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Damilola Olatunji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Shikha Malik
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Chonghui Ji
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Natalie M Clark
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50014, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50014, USA
| |
Collapse
|
3
|
Ntelkis N, Goossens A, Šola K. Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102575. [PMID: 38901289 DOI: 10.1016/j.pbi.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Although plant metabolic engineering enables the sustainable production of valuable metabolites with many applications, we still lack a good understanding of many multi-layered regulatory networks that govern metabolic pathways at the metabolite, protein, transcriptional and cellular level. As transcriptional regulation is better understood and often reviewed, here we highlight recent advances in the cell type-specific and post-translational regulation of plant specialized metabolism. With the advent of single-cell technologies, we are now able to characterize metabolites and their transcriptional regulators at the cellular level, which can refine our searches for missing biosynthetic enzymes and cell type-specific regulators. Post-translational regulation through enzyme inhibition, protein phosphorylation and ubiquitination are clearly evident in specialized metabolism regulation, but not frequently studied or considered in metabolic engineering efforts. Finally, we contemplate how advances in cell type-specific and post-translational regulation can be applied in metabolic engineering efforts in planta, leading to optimization of plants as metabolite production vehicles.
Collapse
Affiliation(s)
- Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium; Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| | - Krešimir Šola
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium; VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| |
Collapse
|
4
|
Zhang A, He H, Wang R, Shen Z, Wu Z, Song R, Song B. Synthesis, Bioactivities, and Antibacterial Mechanism of 5-(Thioether)- N-phenyl/benzyl-1,3,4-oxadiazole-2-carboxamide/amine Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1444-1453. [PMID: 38206812 DOI: 10.1021/acs.jafc.3c05816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
1,3,4-Oxadiazole thioethers have shown exciting antibacterial activities; however, the current mechanism of action involving such substances against bacteria is limited to proteomics-mediated protein pathways and differentially expressed gene analysis. Herein, we report a series of novel 1,3,4-oxadiazole thioethers containing a carboxamide/amine moiety, most of which show good in vitro and in vivo bacteriostatic activities. Compounds A10 and A18 were screened through CoMFA models as optimums against Xanthomonas oryzae pv. oryzae (Xoo, EC50 values of 5.32 and 4.63 mg/L, respectively) and Xanthomonas oryzae pv. oryzicola (Xoc, EC50 values of 7.58 and 7.65 mg/L, respectively). Compound A10 was implemented in proteomic techniques and activity-based protein profiling (ABPP) analysis to elucidate the antibacterial mechanism and biochemical targets. The results indicate that A10 disrupts the growth and pathogenicity of Xoc by interfering with pathways associated with bacterial virulence, including the two-component regulation system, flagellar assembly, bacterial secretion system, quorum sensing, ABC transporters, and bacterial chemotaxis. Specifically, the translational regulator (CsrA) and the virulence regulator (Xoc3530) are two effective target proteins of A10. Knocking out the CsrA or Xoc3530 gene in Xoc results in a significant reduction in the motility and pathogenicity of the mutant strains. This study contributes available molecular entities, effective targets, and mechanism basis for the management of rice bacterial diseases.
Collapse
Affiliation(s)
- Awei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Hongfu He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Ronghua Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Zengxue Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang550025, P. R. China
| |
Collapse
|
5
|
Lin W, Wu S, Wei M. Ubiquitylome analysis reveals the involvement of ubiquitination in the cold responses of banana seedling leaves. J Proteomics 2023; 288:104994. [PMID: 37598917 DOI: 10.1016/j.jprot.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Low temperature is a crucial environmental factor limiting the productivity and distribution of banana. Ubiquitination (Kub) is one of the main posttranslational modifications (PTMs) involved in plant responses to abiotic stresses. However, little information is available on the effects of Kub on banana under cold stress. In this study, we used label-free quantification (LFQ) to identify changes in the protein expression and Kub levels in banana seedling leaves after chilling treatment. In total, 4156 proteins, 1089 ubiquitinated proteins and 2636 Kub sites were quantified. Western blot assays showed that Kub was abundant in leaves after low-temperature treatment. Our results show that the proteome and ubiquitylome were negatively correlated, indicating that Kub could be involved in the degradation of proteins in banana after chilling treatment. Based on bioinformatics analysis, low-temperature stress-related signals and metabolic pathways such as cold acclimation, glutathione metabolism, calcium signaling, and photosynthesis signaling were identified. In addition, we found that transcription factors and chromatin remodeling factors related to low-temperature stress were ubiquitinated. Overall, our work presents the first systematic analysis of the Kub proteome in banana under cold stress and provides support for future studies on the regulatory mechanisms of Kub during the cold stress response in plants. SIGNIFICANCE: Banana is a typical tropical fruit tree with poor low-temperature tolerance,however, the role of PTMs such as Kub in the cold response of banana remains unclear. This study highlights the fact that the effects of low-temperature on proteome and ubiquitylome in the banana seedling leaves, we discussed the correlation between transcriptome and proteome, ubiquitylome and proteome, and we analyzed the expression and the changes of ubiquitination levels of low-temperature related proteins and pathway after chilling treatment, and we found that transcription factors and chromatin remodeling factors related to low-temperature stress were ubiquitinated. This study provides new insights into the ubiquitination pathway of banana under cold stress.
Collapse
Affiliation(s)
- Wei Lin
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian 363005, People's Republic of China.
| | - Shuijin Wu
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian 363005, People's Republic of China
| | - Mi Wei
- Academy of Sericulture Sciences, Nanning, Guangxi 530007, People's Republic of China
| |
Collapse
|
6
|
Jiang J, Xie X, Li X. Acetyl-Proteomic Profiling of Sorghum bicolor Seedlings after Chitin Treatment Reveals the Involvement of Acetylated Chlorophyll a/b Binding Proteins in the Innate Immune Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384550 DOI: 10.1021/acs.jafc.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Plant pathogen-associated molecular pattern-triggered immunity (PTI) is affected by post-translational modifications, but the role of acetylation in the PTI responses of Sorghum bicolor remains unclear. In this study, a comprehensive acetyl-proteomic analysis was performed on sorghum seedlings treated with chitin based on label-free protein quantification. Chitin rapidly induced 15 PTI-related genes and 5 defense enzymes. Acetylation was upregulated in sorghum after the chitin treatment, and 579, 895, and 929 acetylated proteins, peptides, and sites, respectively, were identified using high-performance liquid chromatography-tandem mass spectrometry. Acetylation and expression of chlorophyll a/b binding proteins (Lhcs) were significantly upregulated, and they were localized in chloroplasts. Additionally, we found that the expression of Lhcs in vivo enhanced chitin-mediated acetylation. The findings of this study provide a comprehensive assessment of the lysine acetylome in sorghum and a foundation for future study into the regulatory mechanisms of acetylation during chlorophyll synthesis.
Collapse
Affiliation(s)
- Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
7
|
Fang Y, Zhou B, Guo Y, Jiang J, Li X, Xie X. Comparative transcriptome analysis reveals the core molecular network in pattern-triggered immunity in Sorghum bicolor. Int J Biol Macromol 2023:124834. [PMID: 37207754 DOI: 10.1016/j.ijbiomac.2023.124834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first line of defense in plant disease resistance. However, the molecular mechanisms of plant PTI vary across species, making it challenging to identify a core set of trait-associated genes. This study aimed to investigate key factors that influence PTI and identify the core molecular network in Sorghum bicolor, a C4 plant. We performed comprehensive weighted gene co-expression network analysis and temporal expression analysis of large-scale transcriptome data from various sorghum cultivars under different PAMP treatments. Our results revealed that the type of PAMP had a stronger influence on the PTI network than did the sorghum cultivar. Following PAMP treatment, 30 genes with stable downregulated expression and 158 genes with stable upregulated expression were identified, including genes encoding potential pattern recognition receptors whose expression was upregulated within 1 h of treatment. PAMP treatment altered the expression of resistance-related, signaling, salt-sensitive, heavy metal-related, and transporter genes. These findings provide novel insights into the core genes involved in plant PTI and are expected to facilitate the identification and application of resistance genes in plant breeding studies.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Bingqian Zhou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yushan Guo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
8
|
Wei L, Wang D, Gupta R, Kim ST, Wang Y. A Proteomics Insight into Advancements in the Rice-Microbe Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051079. [PMID: 36903938 PMCID: PMC10005616 DOI: 10.3390/plants12051079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 05/23/2023]
Abstract
Rice is one of the most-consumed foods worldwide. However, the productivity and quality of rice grains are severely constrained by pathogenic microbes. Over the last few decades, proteomics tools have been applied to investigate the protein level changes during rice-microbe interactions, leading to the identification of several proteins involved in disease resistance. Plants have developed a multi-layered immune system to suppress the invasion and infection of pathogens. Therefore, targeting the proteins and pathways associated with the host's innate immune response is an efficient strategy for developing stress-resistant crops. In this review, we discuss the progress made thus far with respect to rice-microbe interactions from side views of the proteome. Genetic evidence associated with pathogen-resistance-related proteins is also presented, and challenges and future perspectives are highlighted in order to understand the complexity of rice-microbe interactions and to develop disease-resistant crops in the future.
Collapse
Affiliation(s)
- Lirong Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dacheng Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Maeda S, Ackley W, Yokotani N, Sasaki K, Ohtsubo N, Oda K, Mori M. Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Int J Mol Sci 2023; 24:ijms24043644. [PMID: 36835053 PMCID: PMC9965303 DOI: 10.3390/ijms24043644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
| | - Wataru Ackley
- Institute of Livestock and Grassland Science, NARO (NILGS), Nasushiobara 329-2793, Japan
| | - Naoki Yokotani
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama 716-1241, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsukuba 305-0852, Japan
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, NARO (NIVFS), Tsukuba 305-0852, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama 716-1241, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Correspondence: ; Tel.: +81-(29)-8387008
| |
Collapse
|
10
|
Decreased ubiquitin modifying enzyme A20 associated with hyper-responsiveness to ovalbumin challenge following intrauterine growth restriction. Respir Res 2023; 24:50. [PMID: 36788604 PMCID: PMC9926749 DOI: 10.1186/s12931-023-02360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is strongly correlated with an increased risk of asthma later in life. Farm dust protects mice from developing house dust mite-induced asthma, and loss of ubiquitin modifying enzyme A20 in lung epithelium would abolish this protective effect. However, the mechanisms of A20 in the development of asthma following IUGR remains unknown. METHODS An IUGR rat model induced by maternal nutrient restriction was used for investigating the role of A20 in the response characteristics of IUGR rats to ovalbumin (OVA) challenge. The ubiquitination of proteins and N6-methyladenosine (m6A) modifications were used to further assess the potential mechanism of A20. RESULTS IUGR can reduce the expression of A20 protein in lung tissue of newborn rats and continue until 10 weeks after birth. OVA challenging can increase the expression of A20 protein in lung tissue of IUGR rats, but its level was still significantly lower than the control OVA group. The differentially ubiquitinated proteins in lung tissues were also observed in IUGR and normal newborn rats. Furthermore, this ubiquitination phenomenon continued from the newborn to adulthood. In the detected RNA methylations, m6A abundance of the motif GGACA was the highest. The higher abundances of m6A modification of A20 mRNA from IUGR were negatively correlated with the trend of A20 protein levels. CONCLUSION These findings indicate A20 as a key regulator during the development of asthma following IUGR, providing further insight into the prevention of asthma induced by environmental factors.
Collapse
|
11
|
Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. Int J Mol Sci 2022; 23:ijms232416088. [PMID: 36555729 PMCID: PMC9782053 DOI: 10.3390/ijms232416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) are important molecular processes that regulate organismal responses to different stresses. Ubiquitination modification is not only involved in human health but also plays crucial roles in plant growth, development, and responses to environmental stresses. In this study, we investigated the ubiquitination proteome changes in the salt-tolerant sugar beet monomeric additional line M14 under salt stress treatments. Based on the expression of the key genes of the ubiquitination system and the ubiquitination-modified proteins before and after salt stress, 30 min of 200 mM NaCl treatment and 6 h of 400 mM NaCl treatment were selected as time points. Through label-free proteomics, 4711 and 3607 proteins were identified in plants treated with 200 mM NaCl and 400 mM NaCl, respectively. Among them, 611 and 380 proteins were ubiquitinated, with 1085 and 625 ubiquitination sites, in the two salt stress conditions, respectively. A quantitative analysis revealed that 70 ubiquitinated proteins increased and 47 ubiquitinated proteins decreased. At the total protein level, 42 were induced and 20 were repressed with 200 mM NaCl, while 28 were induced and 27 were repressed with 400 mM NaCl. Gene ontology, KEGG pathway, protein interaction, and PTM crosstalk analyses were performed using the differentially ubiquitinated proteins. The differentially ubiquitinated proteins were mainly involved in cellular transcription and translation processes, signal transduction, metabolic pathways, and the ubiquitin/26S proteasome pathway. The uncovered ubiquitinated proteins constitute an important resource of the plant stress ubiquitinome, and they provide a theoretical basis for the marker-based molecular breeding of crops for enhanced stress tolerance.
Collapse
|
12
|
Gao C, Tang D, Wang W. The Role of Ubiquitination in Plant Immunity: Fine-Tuning Immune Signaling and Beyond. PLANT & CELL PHYSIOLOGY 2022; 63:1405-1413. [PMID: 35859340 DOI: 10.1093/pcp/pcac105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is an essential posttranslational modification and plays a crucial role in regulating plant immunity by modulating protein activity, stability, abundance and interaction. Recently, major breakthroughs have been made in understanding the mechanisms associated with the regulation of immune signaling by ubiquitination. In this mini review, we highlight the recent advances in the role of ubiquitination in fine-tuning the resistance activated by plant pattern recognition receptors (PRRs) and intracellular nucleotide-binding site and leucine-rich repeat domain receptors (NLRs). We also discuss current understanding of the positive regulation of plant immunity by ubiquitination, including the modification of immune negative regulators and of the guardee proteins monitored by NLRs.
Collapse
Affiliation(s)
- Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Hu H, Cai L, Zhang T, Liu T, Jiang Y, Liu H, Lu Q, Yang J, Chen J. Central Role of Ubiquitination in Wheat Response to CWMV Infection. Viruses 2022; 14:v14081789. [PMID: 36016412 PMCID: PMC9412516 DOI: 10.3390/v14081789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ubiquitination is a major post-translational modification (PTM) involved in almost all eukaryotic biological processes and plays an essential role in plant response to pathogen infection. However, to date, large-scale profiling of the changes in the ubiquitome in response to pathogens, especially viruses, in wheat has not been reported. This study aimed to identify the ubiquitinated proteins involved in Chinese wheat mosaic virus (CWMV) infection in wheat using a combination of affinity enrichment and high-resolution liquid chromatography-tandem mass spectroscopy. The potential biological functions of these ubiquitinated proteins were further analyzed using bioinformatics. A total of 2297 lysine ubiquitination sites in 1255 proteins were identified in wheat infected with CWMV, of which 350 lysine ubiquitination sites in 192 proteins were differentially expressed. These ubiquitinated proteins were related to metabolic processes, responses to stress and hormones, plant–pathogen interactions, and ribosome pathways, as assessed via Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Furthermore, we found that the ubiquitination of Ta14-3-3 and TaHSP90, which are essential components of the innate immune system, was significantly enhanced during CWMV infection, which suggested that ubiquitination modification plays a vital role in the regulatory network of the host response to CWMV infection. In summary, our study puts forward a novel strategy for further probing the molecular mechanisms of CWMV infection. Our findings will inform future research to find better, innovative, and effective solutions to deal with CWMV infection in wheat, which is the most crucial and widely used cereal grain crop.
Collapse
Affiliation(s)
- Haichao Hu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Linna Cai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tingting Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hanhong Liu
- Junan County Bureau of Agriculture and Country, Linyi 276600, China
| | - Qisen Lu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.Y.); (J.C.)
| | - Jianping Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.Y.); (J.C.)
| |
Collapse
|
14
|
Wang R, You X, Zhang C, Fang H, Wang M, Zhang F, Kang H, Xu X, Liu Z, Wang J, Zhao Q, Wang X, Hao Z, He F, Tao H, Wang D, Wang J, Fang L, Qin M, Zhao T, Zhang P, Xing H, Xiao Y, Liu W, Xie Q, Wang GL, Ning Y. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome. Genome Biol 2022; 23:154. [PMID: 35821048 PMCID: PMC9277809 DOI: 10.1186/s13059-022-02717-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ubiquitination is essential for many cellular processes in eukaryotes, including 26S proteasome-dependent protein degradation, cell cycle progression, transcriptional regulation, and signal transduction. Although numerous ubiquitinated proteins have been empirically identified, their cognate ubiquitin E3 ligases remain largely unknown. RESULTS Here, we generate a complete ubiquitin E3 ligase-encoding open reading frames (UbE3-ORFeome) library containing 98.94% of the 1515 E3 ligase genes in the rice (Oryza sativa L.) genome. In the test screens with four known ubiquitinated proteins, we identify both known and new E3s. The interaction and degradation between several E3s and their substrates are confirmed in vitro and in vivo. In addition, we identify the F-box E3 ligase OsFBK16 as a hub-interacting protein of the phenylalanine ammonia lyase family OsPAL1-OsPAL7. We demonstrate that OsFBK16 promotes the degradation of OsPAL1, OsPAL5, and OsPAL6. Remarkably, we find that overexpression of OsPAL1 or OsPAL6 as well as loss-of-function of OsFBK16 in rice displayed enhanced blast resistance, indicating that OsFBK16 degrades OsPALs to negatively regulate rice immunity. CONCLUSIONS The rice UbE3-ORFeome is the first complete E3 ligase library in plants and represents a powerful proteomic resource for rapid identification of the cognate E3 ligases of ubiquitinated proteins and establishment of functional E3-substrate interactome in plants.
Collapse
Affiliation(s)
- Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaoman You
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiao Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zheng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Debao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jisong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Mengchao Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Tianxiao Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | | | - Hefei Xing
- OE Biotech Co., Ltd, Shanghai, 201112 China
| | | | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
15
|
Lin W, Li Y, Luo C, Huang G, Hu G, He X. Proteomic analysis of ubiquitinated proteins in ‘Xiangshui’ lemon [Citrus limon (L.)] pistils after self- and cross-pollination. J Proteomics 2022; 264:104631. [DOI: 10.1016/j.jprot.2022.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022]
|
16
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
17
|
Wei YQ, Yuan JJ, Xiao CC, Li GX, Yan JY, Zheng SJ, Ding ZJ. RING-box proteins regulate leaf senescence and stomatal closure via repression of ABA transporter gene ABCG40. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:979-994. [PMID: 35274464 DOI: 10.1111/jipb.13247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Plant hormone abscisic acid (ABA) plays an indispensable role in the control of leaf senescence, during which ABA signaling depends on its biosynthesis. Nevertheless, the role of ABA transport in leaf senescence remains unknown. Here, we identified two novel RING-box protein-encoding genes UBIQUITIN LIGASE of SENESCENCE 1 and 2 (ULS1 and ULS2) involved in leaf senescence. Lack of ULS1 and ULS2 accelerates leaf senescence, which is specifically promoted by ABA treatment. Furthermore, the expression of senescence-related genes is significantly affected in mature leaves of uls1/uls2 double mutant (versus wild type (WT)) in an ABA-dependent manner, and the ABA content is substantially increased. ULS1 and ULS2 are mainly expressed in the guard cells and aging leaves, and the expression is induced by ABA. Further RNA-seq and quantitative proteomics of ubiquitination reveal that ABA transporter ABCG40 is highly expressed in uls1/uls2 mutant versus WT, though it is not the direct target of ULS1/2. Finally, we show that the acceleration of leaf senescence, the increase of leaf ABA content, and the promotion of stomatal closure in uls1/usl2 mutant are suppressed by abcg40 loss-of-function mutation. These results indicate that ULS1 and ULS2 function in feedback inhibition of ABCG40-dependent ABA transport during ABA-induced leaf senescence and stomatal closure.
Collapse
Affiliation(s)
- Yun Qi Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Ge M, Gong M, Jiao Y, Li Y, Shen L, Li B, Wang Y, Wang F, Zhang S, Yang J. Serratia marcescens-S3 inhibits Potato virus Y by activating ubiquitination of molecular chaperone proteins NbHsc70-2 in Nicotiana benthamiana. Microb Biotechnol 2022; 15:1178-1188. [PMID: 34788498 PMCID: PMC8966008 DOI: 10.1111/1751-7915.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
The potato virus Y (PVY) is a plant virus that causes massive crop losses globally, especially in Solanaceae crops. A strain of the plant growth-promoting rhizobacterium (PGPR), Serratia marcescens-S3 was found to inhibit PVY replication in Nicotiana benthamiana. However, there have been no in-depth studies demonstrating the underlying mechanism. In the current study, we found that ubiquitination of NbHsc70-2 is an important way for Serratia marcescens-S3 to trigger induced systemic resistance (ISR). After the treatment with S. marcescens-S3, the protein level of NbHsc70-2 reduced significantly. Inhibiting of ubiquitination increased the accumulation of NbHsc70-2 in plants and reduced S. marcescens-S3-mediated resistance to PVY. Furthermore, transgenic engineered Nicotiana benthamiana NbHsc70-2KO and NbHsc70-2USM were constructed using CRISPR-Cas9-mediated NbHsc70-2 knock-out and ubiquitination respectively. S. marcescens-S3 significantly reduced the inhibition of NbHsc70-2 protein accumulation in NbHsc70-2KO and NbHsc70-2USM . The virulence of PVY was stronger in NbHsc70-2USM than the wild-type plants. These results showed that S. marcescens-S3 increases the ubiquitination of NbHsc70-2 to inhibit the recruitment of molecular chaperone NbHsc70-2 to reduce its replication and infection of PVY.
Collapse
Affiliation(s)
- Ming Ge
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| | - Mingyue Gong
- Hubei Engineering Research Center for Pest Forewarning and ManagementJingzhou434025China
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| | - Bin Li
- Sichuan Province Company of China Tobacco CorporationChengdu610017China
| | - Yujie Wang
- Luoyang City Company of Henan Tobacco CompanyLuoyang471000China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and ManagementJingzhou434025China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated ManagementTobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao266101China
| |
Collapse
|
19
|
Yu X, Zhu Y, Xie Y, Li L, Jin Z, Shi Y, Luo C, Wei Y, Cai Q, He W, Zheng Y, Xie H, Zhang J. Ubiquitylomes and proteomes analyses provide a new interpretation of the molecular mechanisms of rice leaf senescence. PLANTA 2022; 255:43. [PMID: 35044566 DOI: 10.1007/s00425-021-03793-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
We identified a typical rice premature senescence leaf mutant 86 (psl86) and exhibited the first global ubiquitination data during rice leaf senescence. Premature leaf senescence affects the yield and quality of rice, causing irreparable agricultural economic losses. In this study, we reported a rice premature senescence leaf mutant 86 (psl86) in the population lines of rice (Oryza sativa) japonica cultivar 'Yunyin' (YY) mutagenized using ethyl methane sulfonate (EMS) treatment. Immunoblotting analysis revealed that a higher ubiquitination level in the psl86 mutant compared with YY. Thus, we performed the proteome and ubiquitylome analyses to identify the differential abundance proteins and ubiquitinated proteins (sites) related to leaf senescence. Among 885 quantified lysine ubiquitination (Kub) sites in 492 proteins, 116 sites in 94 proteins were classified as up-regulated targets and seven sites in six proteins were classified as down-regulated targets at a threshold of 1.5. Proteins with up-regulated Kub sites were mainly enriched in the carbon fixation in photosynthetic organisms, glycolysis/gluconeogenesis and the pentose phosphate pathway. Notably, 14 up-regulated Kub sites in 11 proteins were enriched in the carbon fixation in photosynthetic organism pathway, and seven proteins (rbcL, PGK, GAPA, FBA5, ALDP, CFBP1 and GGAT) were down-regulated, indicating this pathway is tightly regulated by ubiquitination during leaf senescence. To our knowledge, we present the first global data on ubiquitination during rice leaf senescence.
Collapse
Affiliation(s)
- Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yongsheng Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Lele Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Ziyi Jin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yunrui Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Cuiqin Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Yanmei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, National Rice Improvement Center of China, Fuzhou, 350003, China.
| |
Collapse
|
20
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions. Proteomes 2022; 10:5. [PMID: 35225985 PMCID: PMC8883913 DOI: 10.3390/proteomes10010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant-pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant-pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant-pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant-pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant.
Collapse
Affiliation(s)
- Sadegh Balotf
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| |
Collapse
|
21
|
NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 2022; 601:245-251. [PMID: 34912119 DOI: 10.1038/s41586-021-04219-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.
Collapse
|
22
|
Tang B, Liu C, Li Z, Zhang X, Zhou S, Wang G, Chen X, Liu W. Multilayer regulatory landscape during pattern-triggered immunity in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2629-2645. [PMID: 34437761 PMCID: PMC8633500 DOI: 10.1111/pbi.13688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Upon fungal and bacterial pathogen attack, plants launch pattern-triggered immunity (PTI) by recognizing pathogen-associated molecular patterns (PAMPs) to defend against pathogens. Although PTI-mediated response has been widely studied, a systematic understanding of the reprogrammed cellular processes during PTI by multi-omics analysis is lacking. In this study, we generated metabolome, transcriptome, proteome, ubiquitome and acetylome data to investigate rice (Oryza sativa) PTI responses to two PAMPs, the fungi-derived chitin and the bacteria-derived flg22. Integrative multi-omics analysis uncovered convergence and divergence of rice responses to these PAMPs at multiple regulatory layers. Rice responded to chitin and flg22 in a similar manner at the transcriptome and proteome levels, but distinct at the metabolome level. We found that this was probably due to post-translational regulation including ubiquitination and acetylation, which reshaped gene expression by modulating enzymatic activities, and possibly led to distinct metabolite profiles. We constructed regulatory atlas of metabolic pathways, including the defence-related phenylpropanoid and flavonoid biosynthesis and linoleic acid derivative metabolism. The multi-level regulatory network generated in this study sets the foundation for in-depth mechanistic dissection of PTI in rice and potentially in other related poaceous crop species.
Collapse
Affiliation(s)
- Bozeng Tang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xixi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shaoqun Zhou
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Guo‐Liang Wang
- Department of Plant PathologyThe Ohio State UniversityColumbusOHUSA
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant PathologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
23
|
Kong L, Rodrigues B, Kim JH, He P, Shan L. More than an on-and-off switch: Post-translational modifications of plant pattern recognition receptor complexes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102051. [PMID: 34022608 DOI: 10.1016/j.pbi.2021.102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Sensing microbe-associated molecular patterns (MAMPs) by cell surface-resident pattern recognition receptors (PRRs) constitutes a core process in launching a successful immune response. Over the last decade, remarkable progress has been made in delineating the mechanisms of PRR-mediated plant immunity. As the frontline of defense, the homeostasis, activities, and subcellular dynamics of PRR and associated regulators are subjected to tight regulations. The layered protein post-translational modifications, particularly the intertwined phosphorylation and ubiquitylation of PRR complexes, play a central role in regulating PRR signaling outputs and plant immune responses. This review provides an update about the PRR complex regulation by various post-translational modifications and discusses how protein phosphorylation and ubiquitylation act in concert to ensure a rapid, proper, and robust immune response.
Collapse
Affiliation(s)
- Liang Kong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Barbara Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Hyeok Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
24
|
Elmore JM, Griffin BD, Walley JW. Advances in functional proteomics to study plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102061. [PMID: 34102449 DOI: 10.1016/j.pbi.2021.102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 05/20/2023]
Abstract
Pathogen infection triggers complex signaling networks in plant cells that ultimately result in either susceptibility or resistance. We have made substantial progress in dissecting many of these signaling events, and it is becoming clear that changes in proteome composition and protein activity are major drivers of plant-microbe interactions. Here, we highlight different approaches to analyze the functional proteomes of hosts and pathogens and discuss how they have been used to further our understanding of plant disease. Global proteome profiling can quantify the dynamics of proteins, posttranslational modifications, and biological pathways that contribute to immune-related outcomes. In addition, emerging techniques such as enzyme activity-based profiling, proximity labeling, and kinase-substrate profiling are being used to dissect biochemical events that operate during infection. Finally, we discuss how these functional approaches can be integrated with other profiling data to gain a mechanistic, systems-level view of plant and pathogen signaling.
Collapse
Affiliation(s)
- James M Elmore
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| | - Brianna D Griffin
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50014, USA.
| |
Collapse
|
25
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
26
|
Wang X, Xiang D, Wang Z, Wang Z, Yang X, Yu S, Pang Q, Liu S, Yan L. Label-free quantitative proteomics analysis of Humulus scandens (Lour.) Merr. leaves treated by an odor compound of Periploca sepium Bunge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112131. [PMID: 33752163 DOI: 10.1016/j.ecoenv.2021.112131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The odor compound from Periploca sepium Bunge, 2-hydroxy-4-methoxy-benzaldehyde (HMB), is an allelochemical agent and is one of the least investigated isomers of vanillin. In this study, we used label-free quantitative proteomics analysis technology to investigate the effect of HMB on the protein expression of Humulus scandens (Lour.) Merr. leaves in July 2019 on Guiyang. A total of 269 proteins of 624 identified proteins were differentially expressed, among which 21.18% of the proteins were up-regulated and 32.71% down-regulated. These proteins were classified into 11 cell components and more than 20% of differentially expressed proteins were located in cell membrane and chloroplast. Functional classification analysis showed that 12 molecular functions were altered upon HMB treatment, and the ratio of catalytic activity was the highest (19.53%). At least 12 biological functions were affected, which involved small molecule metabolic processes, organic substance metabolic processes, gene expression, and photosynthesis. Our data provide resources and insights into the biochemical mechanism by which HMB kills weeds.
Collapse
Affiliation(s)
- Xiaxia Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China; Institute of Animal Husbandry and Veterinary Sciences, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dinglei Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Ziyi Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province 550025, China
| | - Zhaoguo Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Shuai Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Qiuxia Pang
- Biochemistry Department of Medical School, Yan'an University, Yanan 716000, China
| | - Sheng Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Li Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| |
Collapse
|
27
|
Fan W, Zheng H, Wang G. Proteomic analysis of ubiquitinated proteins in maize immature kernels. J Proteomics 2021; 243:104261. [PMID: 33984506 DOI: 10.1016/j.jprot.2021.104261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/17/2022]
Abstract
Protein ubiquitination is a dynamic post-translational modification involved in various biological processes in eukaryotes. To understand the function of ubiquitinated proteins in maize kernels, we used the specific K-GG antibody coupled with high-resolution LC-MS/MS to identify the ubiquitinated proteins in maize immature kernels. A total of 1999 lysine ubiquitination sites in 881 proteins were identified in maize kernels. Eight conserved ubiquitination motifs included KubD, GKub, EKub, KubXXXE, AKub, NXKub, KubXXXXXN, and KKub were found in ubiquitinated peptides. The ubiquitinated lysine neighborhoods are more frequently presented in ordered structures. Go and KEGG analysis showed the proteins involved in carbohydrate metabolism and protein processing were identified to be the targets of lysine ubiquitination. Other proteins, which related to RNA transport, spliceosome, endocytosis, ubiquitin-mediated proteolysis, proteasome, and MAPK signaling, were also found to be ubiquitinated. Protein-protein interaction network and KEGG analysis indicated that protein ubiquitination plays a major role in regulating many cellular processes and modulating diverse interactions in maize kernel development. The identification of the 881 ubiquitinated proteins in maize kernels provides a foundation for understanding the physiological roles of these ubiquitinated proteins. Our finding also provides a new insight view into the function of ubiquitinated proteins involved in maize kernel development. SIGNIFICANCE: We reported here the comprehensive proteomic analysis of the ubiquitin-modified proteome in maize kernel. We found that there are some new characteristics of them in ubiquitome of maize immature kernels. The results suggested that protein ubiquitination, as a post-translation modification, plays an essential role in regulating many cellular processes in maize kernel development. This study expands our knowledge on the regulatory roles and mechanisms of protein ubiquitination in maize. and other plants.
Collapse
Affiliation(s)
- Wei Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Hongjian Zheng
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences/CIMMYT-China Specialty Maize Research Center, Shanghai 201100, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 201100, China.
| |
Collapse
|
28
|
Ma X, Zhang C, Kim DY, Huang Y, Chatt E, He P, Vierstra RD, Shan L. Ubiquitylome analysis reveals a central role for the ubiquitin-proteasome system in plant innate immunity. PLANT PHYSIOLOGY 2021; 185:1943-1965. [PMID: 33793954 PMCID: PMC8133637 DOI: 10.1093/plphys/kiab011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 min with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chao Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Do Young Kim
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Advanced Bio Convergence Center, Pohang Technopark, Gyeong-Buk 37668, South Korea
| | - Yanyan Huang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Elizabeth Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin–Madison, 425-G Henry Mall, Madison, Wisconsin 53706
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Author for communication:
| |
Collapse
|
29
|
Xie X, Yan Y, Liu T, Chen J, Huang M, Wang L, Chen M, Li X. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104681. [PMID: 32980063 DOI: 10.1016/j.pestbp.2020.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chitosan oligosaccharides (COS) can elicit plant immunity and defence responses in rice plants, but exactly how this promotes plant growth remains largely unknown. Herein, we explored the effects of 0.5 mg/L COS on plant growth promotion in rice seedlings by measuring root and stem length, investigating biochemical factors in whole plants via proteomic analysis, and confirming upregulated and downregulated genes by real-time quantitative PCR. Pathway enrichment results showed that COS promoted root and stem growth, and stimulated metabolic (biosynthetic and catabolic processes) and photosynthesis in rice plants during the seedling stage. Expression levels of genes related to chlorophyll a-b binding, RNA binding, catabolic processes and calcium ion binding were upregulated following COS treatment. Furthermore, comparative analysis indicated that numerous proteins involved in the biosynthesis, metabolic (catabolic) processes and photosynthesis pathways were upregulated. The findings indicate that COS may upregulate calcium ion binding, photosynthesis, RNA binding, and catabolism proteins associated with plant growth during the rice seedling stage.
Collapse
Affiliation(s)
- Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yunlong Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jun Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Meiqing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
30
|
Jia X, Rajib MR, Yin H. Recognition Pattern, Functional Mechanism and Application of Chitin and Chitosan Oligosaccharides in Sustainable Agriculture. Curr Pharm Des 2020; 26:3508-3521. [DOI: 10.2174/1381612826666200617165915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Background:
Application of chitin attracts much attention in the past decades as the second abundant
polysaccharides in the world after cellulose. Chitin oligosaccharides (CTOS) and its deacetylated derivative chitosan
oligosaccharides (COS) were shown great potentiality in agriculture by enhancing plant resistance to abiotic
or biotic stresses, promoting plant growth and yield, improving fruits quality and storage, etc. Those applications
have already served huge economic and social benefits for many years. However, the recognition mode and functional
mechanism of CTOS and COS on plants have gradually revealed just in recent years.
Objective:
Recognition pattern and functional mechanism of CTOS and COS in plant together with application
status of COS in agricultural production will be well described in this review. By which we wish to promote
further development and application of CTOS and COS–related products in the field.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mijanur R. Rajib
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Zhan H, Song L, Kamran A, Han F, Li B, Zhou Z, Liu T, Shen L, Li Y, Wang F, Yang J. Comprehensive Proteomic Analysis of Lysine Ubiquitination in Seedling Leaves of Nicotiana tabacum. ACS OMEGA 2020; 5:20122-20133. [PMID: 32832766 PMCID: PMC7439365 DOI: 10.1021/acsomega.0c01741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 05/04/2023]
Abstract
Lysine ubiquitination, a widely studied posttranslational modification, plays vital roles in various biological processes in eukaryotic cells. Although several studies have examined the plant ubiquitylome, no such research has been performed in tobacco, a model plant for molecular biology. Here, we comprehensively analyzed lysine ubiquitination in tobacco (Nicotiana tabacum) using LC-MS/MS along with highly sensitive immune-affinity purification. In total, 964 lysine-ubiquitinated (Kub) sites were identified in 572 proteins. Extensive bioinformatics studies revealed the distribution of these proteins in various cellular locations, including the cytoplasm, chloroplast, nucleus, and plasma membrane. Notably, 25% of the Kub proteins were located in the chloroplast of which 21 were enzymatically involved in important pathways, that is, photosynthesis and carbon fixation. Western blot analysis indicated that TMV infection can cause changes in ubiquitination levels. This is the first comprehensive proteomic analysis of lysine ubiquitination in tobacco, illustrating the vital role of ubiquitination in various physiological and biochemical processes and representing a valuable addition to the existing landscape of lysine ubiquitination.
Collapse
Affiliation(s)
- Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ali Kamran
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fei Han
- State
Tobacco Monopoly Administration, Beijing 100045, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Zhicheng Zhou
- Hunan
Tobacco Science Institute, Changsha 410004, China
| | - Tianbo Liu
- Hunan
Tobacco Science Institute, Changsha 410004, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- wangfenglong@ caas.cn
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- . Tel.: +86-532-88703236
| |
Collapse
|
32
|
Gong BQ, Wang FZ, Li JF. Hide-and-Seek: Chitin-Triggered Plant Immunity and Fungal Counterstrategies. TRENDS IN PLANT SCIENCE 2020; 25:805-816. [PMID: 32673581 DOI: 10.1016/j.tplants.2020.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 05/05/2023]
Abstract
Fungal pathogens are major destructive microorganisms for land plants and pose growing challenges to global crop production. Chitin is a vital building block for fungal cell walls and also a broadly effective elicitor of plant immunity. Here we review the rapid progress in understanding chitin perception and signaling in plants and highlight similarities and differences of these processes between arabidopsis and rice. We also outline moonlight functions of CERK1, an indispensable chitin coreceptor conserved across the plant kingdom, which imply potential crosstalk between chitin signaling and symbiotic or biotic/abiotic stress signaling in plants via CERK1. Moreover, we summarize current knowledge about fungal counterstrategies for subverting chitin-triggered plant immunity and propose open questions and future directions in this field.
Collapse
Affiliation(s)
- Ben-Qiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Zhang C, Wei Y, Xu L, Wu KC, Yang L, Shi CN, Yang GY, Chen D, Yu FF, Xie Q, Ding SW, Wu JG. A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. MOLECULAR PLANT 2020; 13:836-850. [PMID: 32087369 DOI: 10.1016/j.molp.2020.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales, causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wei
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang-Cheng Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao-Nan Shi
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Yi Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei-Fei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Jia X, Qin H, Bose SK, Liu T, He J, Xie S, Ye M, Yin H. Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:301-312. [PMID: 32120172 DOI: 10.1016/j.plaphy.2020.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 05/02/2023]
Abstract
Chitosan oligosaccharides (COS) worked effectively in multiple plant-pathogen interactions as plant immunity regulator, however, due to the complexity of the COS-induced immune signaling network, the topic requires further investigation. In the present study, quantitative analysis of proteins was performed to investigate the underlying mechanism of COS induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis thaliana. 4303 proteins were successfully quantified, 186, 217 and 207 proteins were differently regulated in mock + Pst, COS, and COS + Pst treated plants, respectively, compared with mock plants. From detailed functional and hierarchical clustering analysis, a priming effect of COS on plant immune system by pre-regulated the key proteins related to signaling transduction, defense response, cell wall biosynthesis and modification, plant growth and development, gene transcription and translation, which confers enhanced resistance when Pst DC3000 infection in Arabidopsis. Moreover, RACK1B which has the potential to be the key kinase receptor for COS signals was found out by protein-protein interaction network analysis of COS responsive proteins. In conclusion, COS treatment enable plant to fine-tuning its defense mechanisms for a more rapid and stronger response to future pathogen attacks, which obviously enhances plants defensive capacity that makes COS worked effectively in multiple plant-pathogen interactions.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Santosh Kumar Bose
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tongmei Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jinxia He
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shangqiang Xie
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
35
|
Lu J, Xu Y, Fan Y, Wang Y, Zhang G, Liang Y, Jiang C, Hong B, Gao J, Ma C. Proteome and Ubiquitome Changes during Rose Petal Senescence. Int J Mol Sci 2019; 20:E6108. [PMID: 31817087 PMCID: PMC6940906 DOI: 10.3390/ijms20246108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
Petal senescence involves numerous programmed changes in biological and biochemical processes. Ubiquitination plays a critical role in protein degradation, a hallmark of organ senescence. Therefore, we investigated changes in the proteome and ubiquitome of senescing rose (Rosa hybrida) petals to better understand their involvement in petal senescence. Of 3859 proteins quantified in senescing petals, 1198 were upregulated, and 726 were downregulated during senescence. We identified 2208 ubiquitinated sites, including 384 with increased ubiquitination in 298 proteins and 1035 with decreased ubiquitination in 674 proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that proteins related to peptidases in proteolysis and autophagy pathways were enriched in the proteome, suggesting that protein degradation and autophagy play important roles in petal senescence. In addition, many transporter proteins accumulated in senescing petals, and several transport processes were enriched in the ubiquitome, indicating that transport of substances is associated with petal senescence and regulated by ubiquitination. Moreover, several components of the brassinosteroid (BR) biosynthesis and signaling pathways were significantly altered at the protein and ubiquitination levels, implying that BR plays an important role in petal senescence. Our data provide a comprehensive view of rose petal senescence at the posttranslational level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; (J.L.); (Y.X.); (Y.F.); (Y.W.); (G.Z.); (Y.L.); (C.J.); (B.H.); (J.G.)
| |
Collapse
|
36
|
Wang MW, Zhu HH, Wang PY, Zeng D, Wu YY, Liu LW, Wu ZB, Li Z, Yang S. Synthesis of Thiazolium-Labeled 1,3,4-Oxadiazole Thioethers as Prospective Antimicrobials: In Vitro and in Vivo Bioactivity and Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12696-12708. [PMID: 31657554 DOI: 10.1021/acs.jafc.9b03952] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a type of thiazolium-labeled 1,3,4-oxadiazole thioether bridged by diverse alkyl chain lengths was constructed. The antimicrobial activity of the fabricated thioether toward plant pathogenic bacteria and fungi was then screened. Antibacterial evaluation indicated that title compounds possess specific characteristics that enable them to severely attack three phytopathogens, namely, Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri with minimal EC50 values of 0.10, 3.27, and 3.50 μg/mL, respectively. Three-dimensional quantitative structure-activity relationship models were established to direct the following excogitation for exploring higher active drugs. The in vivo study against plant bacterial diseases further identified the prospective application of title compounds as alternative antibacterial agents. The proteomic technique, scanning electron microscopy patterns, and fluorescence spectrometry were exploited to investigate the antibacterial mechanism. Additionally, some target compounds performed superior inhibitory actions against three tested fungal strains. In view of their simple molecular architecture and highly efficient bioactivity, these substrates could be further explored as promising surrogates for fighting against plant microbial infections.
Collapse
Affiliation(s)
- Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Huai-He Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
37
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Long QS, Liu LW, Zhao YL, Wang PY, Chen B, Li Z, Yang S. Fabrication of Furan-Functionalized Quinazoline Hybrids: Their Antibacterial Evaluation, Quantitative Proteomics, and Induced Phytopathogen Morphological Variation Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11005-11017. [PMID: 31532657 DOI: 10.1021/acs.jafc.9b03419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The limited number of agrochemicals targeting plant bacterial diseases has driven us to develop highly efficient, low-cost, and versatile antibacterial alternatives. Herein, a novel type of simple furan-functionalized quinazolin-4-amines was systematically fabricated and screened for their antibacterial activity. Bioassay results revealed that compounds C1 and E4 could substantially block the growth of two frequently mentioned pathogens Xanthomonas oryzae pv oryzae and X. axonopodis pv citri in vitro, displaying appreciable EC50 values of 7.13 and 10.3 mg/L, respectively. This effect was prominently improved by comparing those of mainly used agrochemicals. An in vivo experiment against bacterial blight further illustrated their viable applications as antimicrobial ingredients. Quantitative proteomics demonstrated that C1 possessed a remarkable ability to manipulate the upregulation and downregulation of expressed proteins, which probably involved d-glucose and biotin metabolic pathways. This finding was substantially verified by parallel reaction monitoring analysis. Scanning electron microscopy images and fluorescence spectra also indicated that the designed compounds had versatile capacities for destroying the integrity of bacteria. Given these remarkable characteristics, furan-functionalized quinazoline hybrids can serve as a viable platform for developing innovative antibiotic alternatives against bacterial infections.
Collapse
Affiliation(s)
- Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
39
|
Tao QQ, Liu LW, Wang PY, Long QS, Zhao YL, Jin LH, Xu WM, Chen Y, Li Z, Yang S. Synthesis and In Vitro and In Vivo Biological Activity Evaluation and Quantitative Proteome Profiling of Oxadiazoles Bearing Flexible Heterocyclic Patterns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7626-7639. [PMID: 31241941 DOI: 10.1021/acs.jafc.9b02734] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel series of simple 1,3,4-oxadiazoles that bear flexible heterocyclic patterns was prepared, and their biological activities in plant pathogenic bacteria, fungi, oomycetes, and Meloidogyne incognita in vitro and in vivo were screened to explore low-cost and versatile antimicrobial agents. Screening results showed that compounds, such as A0, B0, and C4, were bioactive against Xanthomonas oryzae pv oryzae in vitro and in vivo, and such bioactivities were superior to those of commercial agents bismerthiazol and thiodiazole copper. Their antibacterial mechanisms were further investigated by quantitative proteomics and concentration-dependent scanning electron microscopy images. Antifungal results indicated that compound A0 displayed a selective and better antifungal effect on Botrytis cinerea with inhibition rate of 96.8% at 50 μg/mL. Nematocidal bioassays suggested that compound D1 had good in vitro nematocidal activity toward M. incognita at 24, 48, and 72 h, with the corresponding insecticidal efficiency of 48.7%, 64.1%, and 87.2% at 40 μg/mL. In vivo study further confirmed that compounds D1 and F2 showed nematocidal actions at 80 μg/mL with a disease index of 1.5. Given these advantages, this kind of molecular frameworks could be a suitable platform for exploring highly efficient agrochemicals.
Collapse
Affiliation(s)
- Qing-Qing Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Lin-Hong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Yang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
40
|
Qian S, Zhan X, Lu M, Li N, Long Y, Li X, Desiderio DM, Zhan X. Quantitative Analysis of Ubiquitinated Proteins in Human Pituitary and Pituitary Adenoma Tissues. Front Endocrinol (Lausanne) 2019; 10:328. [PMID: 31191455 PMCID: PMC6540463 DOI: 10.3389/fendo.2019.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
Protein ubiquitination is an important post-translational modification that is associated with multiple diseases, including pituitary adenomas (PAs). Protein ubiquitination profiling in human pituitary and PAs remains unknown. Here, we performed the first ubiquitination analysis with an anti-ubiquitin antibody (specific to K-ε-GG)-based label-free quantitative proteomics method and bioinformatics to investigate protein ubiquitination profiling between PA and control tissues. A total of 158 ubiquitinated sites and 142 ubiquitinated peptides in 108 proteins were identified, and five ubiquitination motifs were found. KEGG pathway network analysis of 108 ubiquitinated proteins identified four statistically significant signaling pathways, including PI3K-AKT signaling pathway, hippo signaling pathway, ribosome, and nucleotide excision repair. R software Gene Ontology (GO) analysis of 108 ubiquitinated proteins revealed that protein ubiquitination was involved in multiple biological processes, cellular components, and molecule functions. The randomly selected ubiquitinated 14-3-3 zeta/delta protein was further analyzed with Western blot, and it was found that upregulated 14-3-3 zeta/delta protein in nonfunctional PAs might be derived from the significantly decreased level of its ubiquitination compared to control pituitaries, which indicated a contribution of 14-3-3 zeta/delta protein to pituitary tumorigenesis. These findings provided the first ubiquitinated proteomic profiling and ubiquitination-involved signaling pathway networks in human PAs. This study offers new scientific evidence and basic data to elucidate the biological functions of ubiquitination in PAs, insights into its novel molecular mechanisms of pituitary tumorigenesis, and discovery of novel biomarkers and therapeutic targets for effective treatment of PAs.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI, Kim YJ, Jeon JS, Agrawal GK, Rakwal R, Kim ST. Proteomics of Rice- Magnaporthe oryzae Interaction: What Have We Learned So Far? FRONTIERS IN PLANT SCIENCE 2019; 10:1383. [PMID: 31737011 PMCID: PMC6828948 DOI: 10.3389/fpls.2019.01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is one of the major constraints to rice production, which feeds half of the world's population. Proteomic technologies have been used as effective tools in plant-pathogen interactions to study the biological pathways involved in pathogen infection, plant response, and disease progression. Advancements in mass spectrometry (MS) and apoplastic and plasma membrane protein isolation methods facilitated the identification and quantification of subcellular proteomes during plant-pathogen interaction. Proteomic studies conducted during rice-M. oryzae interaction have led to the identification of several proteins eminently involved in pathogen perception, signal transduction, and the adjustment of metabolism to prevent plant disease. Some of these proteins include receptor-like kinases (RLKs), mitogen-activated protein kinases (MAPKs), and proteins related to reactive oxygen species (ROS) signaling and scavenging, hormone signaling, photosynthesis, secondary metabolism, protein degradation, and other defense responses. Moreover, post-translational modifications (PTMs), such as phosphoproteomics and ubiquitin proteomics, during rice-M. oryzae interaction are also summarized in this review. In essence, proteomic studies carried out to date delineated the molecular mechanisms underlying rice-M. oryzae interactions and provided candidate proteins for the breeding of rice blast resistant cultivars.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- *Correspondence: Sun Tae Kim,
| |
Collapse
|