1
|
Peng Y, Liang Z, Qing X, Wen M, Yuan Z, Chen Q, Du X, Gu R, Wang J, Li L. Transcriptome Analysis Revealed ZmPTOX1 Is Required for Seedling Development and Stress Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2346. [PMID: 39273830 PMCID: PMC11397459 DOI: 10.3390/plants13172346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Plant seedling morphogenesis is considerably related to photosynthesis, pigment synthesis, and circadian periodicity during seedling development. We identified and cloned a maize zebra or crossbanding leaves mutant wk3735, which produces pale white kernels and was identified and plays a role in the equilibrium of the Redox state the in/out of ETC by active oxygen scavenging. Interestingly, it produces the zebra leaves during the production of the first seven leaves, which is apparently different from the mutation of homologs AtPTOX in Arabidopsis. It is intriguing to investigate how and why yellow crossbands (zebra leaf phenotype) emerge on leaves. As expected, chlorophyll concentration and photosynthetic efficiency both significantly declined in the yellow sector of wk3735 leaves. Meanwhile, we observed the circadian expression pattern of ZmPTOX1, which was further validated by protein interaction assays of the circadian clock protein TIM1 and ZmPTOX1. The transcriptome data of yellow (muW) and green (muG) sectors of knock-out lines and normal leaves of overexpression lines (OE) at the 5th-leaf seedling stage were analyzed. Zebra leaf etiolated sections exhibit a marked defect in the expression of genes involved in the circadian rhythm and rhythmic stress (light and cold stress) responses than green sections. According to the analysis of co-DEGs of muW vs. OE and muG vs. OE, terms linked to cell repair function were upregulated while those linked to environmental adaptability and stress response were downregulated due to the mutation of ZmPTOX1. Further gene expression level analyses of reactive oxygen species (ROS) scavenging enzymes and detection of ROS deposition indicated that ZmPTOX1 played an essential role in plant stress resistance and ROS homeostasis. The pleiotropic roles of ZmPTOX1 in plant ROS homeostasis maintenance, stress response, and circadian rhythm character may collectively explain the phenotype of zebra leaves during wk3735 seedling development.
Collapse
Affiliation(s)
- Yixuan Peng
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Cultivation and Utilization of Oil Tea Resources of Jiangxi Province, Jiangxi Academy Forestry, Nanchang 330013, China
| | - Zhi Liang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xindong Qing
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Motong Wen
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Zhipeng Yuan
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quanquan Chen
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Riliang Gu
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jianhua Wang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Luo M, Wang D, Delaplace P, Pan Y, Zhou Y, Tang W, Chen K, Chen J, Xu Z, Ma Y, Chen M. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107974. [PMID: 37632996 DOI: 10.1016/j.plaphy.2023.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Drought severely affects the yield of wheat (Triticum aestivum L.), which is mainly grown in arid and semi-arid regions. Melatonin plays an important role in various types of stress resistance in plants, including drought resistance. However, the molecular mechanism through which melatonin affects drought tolerance remains largely unknown. In this study, we revealed that melatonin (100 μM) significantly improved drought resistance during the maturation stage of Chinese Spring, Shi4185, and Hanxuan10 varieties, but not Chang6878. Further physiological, transcriptomic, and proteomic data analysis at the wheat seedling stage revealed that melatonin increased jasmonic acid (JA) content, upregulating the expression of JA genes (LOX1.5 and LOX2.1) and two transcription factors (HY5 and MYB86) under drought conditions. It also upregulated genes related to lignin biosynthesis (4CL2, P5CS1, and CCR2) as well as starch and sucrose metabolism (PME53 and SUS4). Additionally, melatonin alleviated photosynthetic and cell membrane damage caused by drought stress through maintaining low levels of hydrogen peroxide. The current results elucidate melatonin-regulated pathways in wheat and provide evidence for using melatonin as a potential biostimulant to improve wheat drought resistance under field conditions in the future.
Collapse
Affiliation(s)
- Mingzhao Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; University of Liege-GxABT, Agricultural Sciences Department, Plant Sciences and Productions Axis, Plant Biology Laboratory, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Daoping Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Pierre Delaplace
- University of Liege-GxABT, Agricultural Sciences Department, Plant Sciences and Productions Axis, Plant Biology Laboratory, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Yinghong Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yongbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Wensi Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Kai Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhaoshi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Youzhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
3
|
Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun 2023; 14:3091. [PMID: 37248257 DOI: 10.1038/s41467-023-38812-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.
Collapse
Affiliation(s)
- Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiying Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dandan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanzhu Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural, Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Liang H, He Q, Zhang H, Zhi H, Tang S, Wang H, Meng Q, Jia G, Chang J, Diao X. Identification and haplotype analysis of SiCHLI: a gene for yellow-green seedling as morphological marker to accelerate foxtail millet (Setaria italica) hybrid breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:24. [PMID: 36739566 DOI: 10.1007/s00122-023-04309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We cloned and developed functional markers for the SiCHLI gene, which is responsible for the yellow-green color of leaves in foxtail millet, a frequently used marker trait in the hybrid breeding of foxtail millet by using bulked segregant analysis sequencing and haplotype analysis on the F2 and core-collected nature populations. The color of leaves has been widely used as a marker for the hybrid breeding of foxtail millet; however, few related gene have been cloned to date. Here, we used two F2 populations generated from crosses between the highly male-sterile material 125A with yellow-green leaves, and CG58 and S410, which have green leaves, to identify the genes underlying the yellow-green color of the leaves of foxtail millet. The leaves of 125A seedlings were yellow-green, but they became green at the heading stage. The content of chlorophyll a and chlorophyll b was lower, the number of thylakoid lamellae and grana was reduced, and the chloroplasts was more rounded in 125A than in S410 at the yellow-green leaf stage; however, no differences were observed between 125A and S410 in these traits and photosynthetic at the heading stage. Bulked segregant analysis and map-based cloning revealed that the SiCHLI gene is responsible for the leaf colors of 125A. A nonsynonymous mutation (C/T) in exon 3 causes yellow-green leaves in 125A at the seedling stage. Haplotype analysis of the SiCHLI gene in 596 core collected accessions revealed a new haplotype associated with high photosynthetic metabolic potential at the heading and mature stages, which could be used to enhance sterile lines with yellow-green leaves. We developed a functional marker that will facilitate the identification of foxtail millet accessions with the different types of yellow-green leaves. Generally, our study provides new genetic resources to guide the future marker-assisted or target-base editing in foxtail millet hybrid breeding.
Collapse
Affiliation(s)
- Hongkai Liang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Hailong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Qiang Meng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China
| | - Jinhua Chang
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, Haidian, China.
| |
Collapse
|
5
|
Lydia Pramitha J, Ganesan J, Francis N, Rajasekharan R, Thinakaran J. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front Genet 2023; 13:1007552. [PMID: 36699471 PMCID: PMC9870178 DOI: 10.3389/fgene.2022.1007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Karunya Institute of Technology and Sciences, Coimbatore, India,*Correspondence: J. Lydia Pramitha,
| | - Jeeva Ganesan
- Tamil Nadu Agricultural University, Coimbatore, India
| | - Neethu Francis
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | | |
Collapse
|
6
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Nadeem F, Mahmood R, Sabir M, Khan WUD, Haider MS, Wang R, Zhong Y, Ishfaq M, Li X. Foxtail millet [Setaria italica (L.) Beauv.] over-accumulates ammonium under low nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:35-44. [PMID: 35660775 DOI: 10.1016/j.plaphy.2022.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) deficiency is a primary limiting factor for crop production worldwide. Previously, we reported root system architectural modifications of hydroponically cultured foxtail millet [Setaria italica (L.) Beauv.] to facilitate N translocation under N limitation. Here, we investigated foxtail millet for its shoot adaptation to low N in terms of internal N regulation under hydroponic culture. The results of this study revealed that the shoot N and nitrate (NO3-) concentrations significantly declined as compared to control (CK); however, the shoot over-accumulated ammonium (NH4+) under low N (LN). N shortage resulted in down-regulation of expressions of SiPetA, SiccsA, SipsbA, SirpoB, SipsaA, SiatpA, Sirps16, and SiPEPC which, undermined chloroplast functioning and CO2 assimilation for the provision of carbon skeleton. Carbon deficiency and lower activities of GS decelerated ammonia assimilation and led to over-accumulation of NH4+ in the LN-shoot, as indicated by lower concentrations of total amino acids. Thus, enhanced GOGAT activity was to assimilate NH4+ while, those of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) were to scavenge reactive oxygen species (ROS) of NH4+ toxicity framework. The weakened chloroplast factory eventually minimized photosynthesis and reduced dry mass of the LN shoot. Such regulation of N by the shoot, perhaps, resurrected physiological functions which maintained internal mineral status under nitrogen limitation in foxtail millet.
Collapse
Affiliation(s)
- Faisal Nadeem
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China; Department of Soil Science, University of the Punjab, Lahore, 54590, Pakistan
| | - Rashid Mahmood
- Department of Soil Science, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Sabir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | | | - Ruifeng Wang
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- Department of Vegetable Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ishfaq
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Zhang H, Tang S, Schnable JC, He Q, Gao Y, Luo M, Jia G, Feng B, Zhi H, Diao X. Genome-Wide DNA Polymorphism Analysis and Molecular Marker Development for the Setaria italica Variety "SSR41" and Positional Cloning of the Setaria White Leaf Sheath Gene SiWLS1. FRONTIERS IN PLANT SCIENCE 2021; 12:743782. [PMID: 34858451 PMCID: PMC8632227 DOI: 10.3389/fpls.2021.743782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Genome-wide DNA polymorphism analysis and molecular marker development are important for forward genetics research and DNA marker-assisted breeding. As an ideal model system for Panicoideae grasses and an important minor crop in East Asia, foxtail millet (Setaria italica) has a high-quality reference genome as well as large mutant libraries based on the "Yugu1" variety. However, there is still a lack of genetic and mutation mapping tools available for forward genetics research on S. italica. Here, we screened another S. italica genotype, "SSR41", which is morphologically similar to, and readily cross-pollinates with, "Yugu1". High-throughput resequencing of "SSR41" identified 1,102,064 reliable single nucleotide polymorphisms (SNPs) and 196,782 insertions/deletions (InDels) between the two genotypes, indicating that these two genotypes have high genetic diversity. Of the 8,361 high-quality InDels longer than 20 bp that were developed as molecular markers, 180 were validated with 91.5% accuracy. We used "SSR41" and these developed molecular markers to map the white leaf sheath gene SiWLS1. Further analyses showed that SiWLS1 encodes a chloroplast-localized protein that is involved in the regulation of chloroplast development in bundle sheath cells in the leaf sheath in S. italica and is related to sensitivity to heavy metals. Our study provides the methodology and an important resource for forward genetics research on Setaria.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - James C. Schnable
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Qiang He
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanzhu Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingzhao Luo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hui Zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|