1
|
Wolfgang A, Tack AJM, Berg G, Abdelfattah A. Reciprocal influence of soil, phyllosphere, and aphid microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:63. [PMID: 37480131 PMCID: PMC10362670 DOI: 10.1186/s40793-023-00515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The effect of soil on the plant microbiome is well-studied. However, less is known about the impact of the soil microbiome in multitrophic systems. Here we examined the effect of soil on plant and aphid microbiomes, and the reciprocal effect of aphid herbivory on the plant and soil microbiomes. We designed microcosms, which separate below and aboveground compartments, to grow oak seedlings with and without aphid herbivory in soils with three different microbiomes. We used amplicon sequencing and qPCR to characterize the bacterial and fungal communities in soils, phyllospheres, and aphids. RESULTS Soil microbiomes significantly affected the microbial communities of phyllospheres and, to a lesser extent, aphid microbiomes, indicating plant-mediated assembly processes from soil to aphids. While aphid herbivory significantly decreased microbial diversity in phyllospheres independent of soil microbiomes, the effect of aphid herbivory on the community composition in soil varied among the three soils. CONCLUSIONS This study provides experimental evidence for the reciprocal influence of soil, plant, and aphid microbiomes, with the potential for the development of new microbiome-based pest management strategies.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
2
|
Ashra H, Nair S. Review: Trait plasticity during plant-insect interactions: From molecular mechanisms to impact on community dynamics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111188. [PMID: 35193737 DOI: 10.1016/j.plantsci.2022.111188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity, prevalent in all domains of life, enables organisms to cope with unpredictable or novel changes in their growing environment. Plants represent an interesting example of phenotypic plasticity which also directly represents and affects the dynamics of biological interactions occurring in a community. Insects, which interact with plants, manifest phenotypic plasticity in their developmental, physiological, morphological or behavioral traits in response to the various host plant defenses induced upon herbivory. However, plant-insect interactions are generally more complex and multidimensional because of their dynamic association with their respective microbiomes and macrobiomes. Moreover, these associations can alter plant and insect responses towards each other by modulating the degree of phenotypic plasticity in their various traits and studying them will provide insights into how plants and insects reciprocally affect each other's evolutionary trajectory. Further, we explore the consequences of phenotypic plasticity on relationships and interactions between plants and insects and its impact on their development, evolution, speciation and ecological organization. This overview, obtained after exploring and comparing data obtained from several inter-disciplinary studies, reveals how genetic and molecular mechanisms, underlying plasticity in traits, impact species interactions at the community level and also identifies mechanisms that could be exploited in breeding programs.
Collapse
Affiliation(s)
- Himani Ashra
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
3
|
He B, Chen X, Yang H, Cernava T. Microbiome Structure of the Aphid Myzus persicae (Sulzer) Is Shaped by Different Solanaceae Plant Diets. Front Microbiol 2021; 12:667257. [PMID: 34290679 PMCID: PMC8287905 DOI: 10.3389/fmicb.2021.667257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myzus persicae (Sulzer) is an important insect pest in agriculture that has a very broad host range. Previous research has shown that the microbiota of insects has implications for their growth, development, and environmental adaptation. So far, there is little detailed knowledge about the factors that influence and shape the microbiota of aphids. In the present study, we aimed to investigate diet-induced changes in the microbiome of M. persicae using high-throughput sequencing of bacterial 16S ribosomal RNA gene fragments in combination with molecular and microbiological experiments. The transfer of aphids to different plants from the Solanaceae family resulted in a substantial decrease in the abundance of the primary symbiont Buchnera. In parallel, a substantial increase in the abundance of Pseudomonas was observed; it accounted for up to 69.4% of the bacterial community in M. persicae guts and the attached bacteriocytes. In addition, we observed negative effects on aphid population dynamics when they were transferred to pepper plants (Capsicum annuum L.). The microbiome of this treatment group showed a significantly lower increase in the abundance of Pseudomonas when compared with the other Solanaceae plant diets, which might be related to the adaptability of the host to this diet. Molecular quantifications of bacterial genera that were substantially affected by the different diets were implemented as an additional verification of the microbiome-based observations. Complementary experiments with bacteria isolated from aphids that were fed with different plants indicated that nicotine-tolerant strains occur in Solanaceae-fed specimens, but they were not restricted to them. Overall, our mechanistic approach conducted under controlled conditions provided strong indications that the aphid microbiome shows responses to different plant diets. This knowledge could be used in the future to develop environmentally friendly methods for the control of insect pests in agriculture.
Collapse
Affiliation(s)
- Baoyu He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Tomislav Cernava
- College of Tobacco Science, Guizhou University, Guiyang, China.,Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
4
|
Blubaugh C, Carpenter-Boggs L, Reganold J, Snyder W. Herbivore-herbivore interactions complicate links between soil fertility and pest resistance. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL, Gaudin ACM, Casteel CL. Organic management promotes natural pest control through altered plant resistance to insects. NATURE PLANTS 2020; 6:483-491. [PMID: 32415295 DOI: 10.1038/s41477-020-0656-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Reduced insect pest populations found on long-term organic farms have mostly been attributed to increased biodiversity and abundance of beneficial predators, as well as to changes in plant nutrient content. However, the role of plant resistance has largely been ignored. Here, we determine whether host plant resistance mediates decreased pest populations in organic systems and identify potential underpinning mechanisms. We demonstrate that fewer numbers of leafhoppers (Circulifer tenellus) settle on tomatoes (Solanum lycopersicum) grown using organic management as compared to conventional. We present multiple lines of evidence, including rhizosphere soil microbiome sequencing, chemical analysis and transgenic approaches, to demonstrate that changes in leafhopper settling between organically and conventionally grown tomatoes are dependent on salicylic acid accumulation in plants and mediated by rhizosphere microbial communities. These results suggest that organically managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.
Collapse
Affiliation(s)
- Robert Blundell
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Alexandria Igwe
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Andrea L Cheung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | | | - Clare L Casteel
- Department of Plant Pathology, University of California, Davis, CA, USA.
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Howard MM, Kao-Kniffin J, Kessler A. Shifts in plant-microbe interactions over community succession and their effects on plant resistance to herbivores. THE NEW PHYTOLOGIST 2020; 226:1144-1157. [PMID: 31943213 DOI: 10.1111/nph.16430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Soil microorganisms can influence the development of complex plant phenotypes, including resistance to herbivores. This microbiome-mediated plasticity may be particularly important for plant species that persist in environments with drastically changing herbivore pressure, for example over community succession. We established a 15-yr gradient of old-field succession to examine the herbivore resistance and rhizosphere microbial communities of Solidago altissima plants in a large-scale field experiment. To assess the functional effects of these successional microbial shifts, we inoculated S. altissima plants with microbiomes from the 2nd , 6th and 15th successional years in a glasshouse and compared their herbivore resistance. The resistance of S. altissima plants to herbivores changed over succession, with concomitant shifts in the rhizosphere microbiome. Late succession microbiomes conferred the strongest herbivore resistance to S. altissima plants in a glasshouse experiment, paralleling the low levels of herbivory observed in the oldest communities in the field. While many factors change over succession and may contribute to the shifts in rhizosphere communities and herbivore resistance we observed, our results indicated that soil microbial shifts alone can alter plants' interactions with herbivores. Our findings suggest that changes in soil microbial communities over succession can play an important role in enhancing plant resistance to herbivores.
Collapse
Affiliation(s)
- Mia M Howard
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jenny Kao-Kniffin
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Serteyn L, Quaghebeur C, Ongena M, Cabrera N, Barrera A, Molina-Montenegro MA, Francis F, Ramírez CC. Induced Systemic Resistance by a Plant Growth-Promoting Rhizobacterium Impacts Development and Feeding Behavior of Aphids. INSECTS 2020; 11:insects11040234. [PMID: 32276327 PMCID: PMC7240704 DOI: 10.3390/insects11040234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
The effects of microorganisms on plant-insect interactions have usually been underestimated. While plant growth-promoting rhizobacteria (PGPR) are known to induce plant defenses, endosymbiotic bacteria hosted by herbivorous insects are often beneficial to the host. Here, we aimed to assess whether PGPR-induced defenses in broad bean plants impact the pea aphid, depending on its genotype and the presence of endosymbionts. We estimated aphid reproduction, quantified defense- and growth-related phytohormones by GC-MS, and measured different plant growth and physiology parameters, after PGPR treatment. In addition, we recorded the feeding behavior of aphids by electropenetrography. We found that the PGPR treatment of broad bean plants reduced the reproduction of one of the pea aphid clones. We highlighted a phenomenon of PGPR-induced plant defense priming, but no noticeable plant growth promotion. The main changes in aphid probing behavior were related to salivation events into phloem sieve elements. We suggest that the endosymbiont Hamiltonella defensa played a key role in plant-insect interactions, possibly helping aphids to counteract plant-induced resistance and allowing them to develop normally on PGPR-treated plants. Our results imply that plant- and aphid-associated microorganisms add greater complexity to the outcomes of aphid-plant interactions.
Collapse
Affiliation(s)
- Laurent Serteyn
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
- Correspondence: (L.S.); (C.C.R.); Tel.: +3-281-622-235 (L.S.); +5-671-220-0289 (C.C.R.)
| | - Céleste Quaghebeur
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
| | - Marc Ongena
- Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liege, B-5030 Gembloux, Belgium;
| | - Nuri Cabrera
- Laboratorio Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile;
| | - Andrea Barrera
- Laboratorio de Ecología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile; (A.B.); (M.A.M.-M.)
| | - Marco A. Molina-Montenegro
- Laboratorio de Ecología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile; (A.B.); (M.A.M.-M.)
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, 1281 Coquimbo, Chile
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium; (C.Q.); (F.F.)
| | - Claudio C. Ramírez
- Laboratorio Interacciones Insecto-Planta, Instituto de Ciencias Biológicas, Universidad de Talca, 1141 Talca, Chile;
- Correspondence: (L.S.); (C.C.R.); Tel.: +3-281-622-235 (L.S.); +5-671-220-0289 (C.C.R.)
| |
Collapse
|
8
|
Krey KL, Blubaugh CK, Van Leuven JT, Snyder WE. Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1323-1330. [PMID: 31553792 PMCID: PMC6885743 DOI: 10.1093/ee/nvz100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 06/10/2023]
Abstract
Soil chemistry and microbial diversity can impact the vigor and nutritive qualities of plants, as well as plants' ability to deploy anti-herbivore defenses. Soil qualities often vary dramatically on organic versus conventional farms, reflecting the many differences in soil management practices between these farming systems. We examined soil-mediated effects on herbivore performance by growing potato plants (Solanum tuberosum L.) in soils collected from organic or conventional commercial farm fields, and then exposing these plants to herbivory by green peach aphids (Myzus persicae Sulzer, Hemiptera: Aphididae) and/or Colorado potato beetles (Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae). Responses of the two potato pests varied dramatically. Survivorship of Colorado potato beetles was almost 3× higher on plants grown in organic than in conventional soils, but was unaffected by the presence of aphids. In contrast, aphid colony growth was twice as rapid when aphids were reared alone rather than with Colorado potato beetles, but was unaffected by soil type. We saw no obvious differences in soil nutrients when comparing organic and conventional soils. However, we saw a higher diversity of bacteria in organic soils, and potato plants grown in this soil had a lower carbon concentration in foliar tissue. In summary, the herbivore species differed in their susceptibility to soil- versus competitor-mediated effects, and these differences may be driven by microbe-mediated changes in host plant quality. Our results suggest that soil-mediated effects on pest growth can depend on herbivore species and community composition, and that soil management strategies that promote plant health may also increase host quality for pests.
Collapse
Affiliation(s)
- Karol L Krey
- Department of Entomology, Washington State University, Pullman, WA
| | - Carmen K Blubaugh
- Department of Entomology, Washington State University, Pullman, WA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID
| | - William E Snyder
- Department of Entomology, Washington State University, Pullman, WA
| |
Collapse
|