1
|
Wang X, Ji H, Zhong L, Zeng W, Ouyang Z, Li R. A Transcriptome Analysis of Poncirus trifoliata, an Aurantioideae Species Tolerant to Asian Citrus Psyllid, Has Identified Potential Genes and Events Associated with Psyllid Resistance. INSECTS 2024; 15:589. [PMID: 39194794 DOI: 10.3390/insects15080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Citrus huanglongbing (HLB) is a devastating disease for citrus production, largely caused by the Asian citrus psyllid (ACP). Poncirus trifoliata exhibits high resistance to ACP; however, this resistance is weakened when C. sinensis is co-cultivated. This study aimed to identify the differentially expressed genes (DEGs) during ACP feeding and to uncover potential ACP resistance genes in P. trifoliata. In comparison to independent cultivation, 1247 and 205 DEGs were identified in P. trifoliata when co-cultivated with C. sinensis after 7 and 14 days, respectively. Analysis of enriched Gene Ontology categories revealed that DEGs were significantly associated with the cell wall, glucometabolic activities, and secondary metabolites. Additionally, these genes were found to be involved in phytohormone signaling, cell wall metabolism, redox state homeostasis, and secondary metabolites, as well as a number of transcription factor genes (TFs). Furthermore, we examined the impact of the ACP feeding factor on the gene expression patterns in P. trifoliata. Results showed an increase in the JA signaling pathway and various TFs. The RNA-seq results were verified using reverse transcription quantitative PCR. Our findings shed light on the molecular basis of ACP resistance in P. trifoliata and identified potential genes associated with this resistance.
Collapse
Affiliation(s)
- Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haoran Ji
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Leijian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Wei Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- National Navel Orange Engineering Research Center, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou 341000, China
| |
Collapse
|
2
|
Aleza P, Garavello MF, Rouiss H, Benedict AC, Garcia-Lor A, Hernández M, Navarro L, Ollitrault P. Inheritance pattern of tetraploids pummelo, mandarin, and their interspecific hybrid sour orange is highly influenced by their phylogenomic structure. FRONTIERS IN PLANT SCIENCE 2023; 14:1327872. [PMID: 38143579 PMCID: PMC10739408 DOI: 10.3389/fpls.2023.1327872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Citrus polyploidy is associated with a wide range of morphological, genetic, and physiological changes that are often advantageous for breeding. Citrus triploid hybrids are very interesting as new seedless varieties. However, tetraploid rootstocks promote adaptation to different abiotic stresses and promote resilience. Triploid and tetraploid hybrids can be obtained through sexual hybridizations using tetraploid parents (2x × 4x, 4x × 2x, or 4x × 4x), but more knowledge is needed about the inheritance pattern of tetraploid parents to optimize the efficiency of triploid varieties and tetraploid rootstock breeding strategies. In this work, we have analyzed the inheritance pattern of three tetraploid genotypes: 'Chandler' pummelo (Citrus maxima) and 'Cleopatra' mandarin (Citrus reticulata), which represent two clear examples of autotetraploid plants constituted by the genome of a single species, and the 'Sevillano' sour orange, which is an allotetraploid interspecific hybrid between C. maxima and C. reticulata. Polymorphic simple sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers were used to estimate parental heterozygosity restitution, and allele frequencies for centromeric loci were used to calculate the preferential pairing rate related to the proportion of disomic and tetrasomic segregation. The tetraploid pummelo and mandarin displayed tetrasomic segregation. Sour orange evidenced a clear intermediate inheritance for five of the nine chromosomes (1, 2, 5, 7, and 8), a slight tendency toward tetrasomic inheritance on chromosome 3, and intermediate inheritance with a tendency toward disomy for chromosomes 4, 6, and 9. These results indicate that the interspecific versus intraspecific phylogenomic origin affects preferential pairing and, therefore, the inheritance patterns. Despite its high level of heterozygosity, the important preferential chromosome pairing observed in sour orange results in a limited diversity of the genotypic variability of its diploid gametes, and consequently, a large part of the genetic value of the original diploid sour orange is transferred to the tetraploid progenies.
Collapse
Affiliation(s)
- Pablo Aleza
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Miguel Fernando Garavello
- Concordia Agricultural Experimental Station, National Agricultural Technology Institute, Concordia, Entre Ríos, Argentina
| | - Houssem Rouiss
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Ana Cristina Benedict
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Andres Garcia-Lor
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Maria Hernández
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Luis Navarro
- Departamento de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Patrick Ollitrault
- Centre de coopération internationale en recherche agronomique pour le développement Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (UMR AGAP) Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
3
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
4
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
5
|
Pasqualetto G, Palmieri L, Martens S, Bus VGM, Chagné D, Wiedow C, Malnoy MA, Gardiner SE. Molecular characterization of intergeneric hybrids between Malus and Pyrus. HORTICULTURE RESEARCH 2022; 10:uhac239. [PMID: 36643755 PMCID: PMC9832871 DOI: 10.1093/hr/uhac239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Apple (Malus) and pear (Pyrus) are economically important fruit crops well known for their unique textures, flavours, and nutritional qualities. Both genera are characterised by a distinct pattern of secondary metabolites, which directly affect not only resistance to certain diseases, but also have significant impacts on the flavour and nutritional value of the fruit. The identical chromosome numbers, similar genome size, and their recent divergence date, together with DNA markers have shown that apple and pear genomes are highly co-linear. This study utilized comparative genomic approaches, including simple sequence repeats, high resolution single nucleotide polymorphism melting analysis, and single nucleotide polymorphism chip analysis to identify genetic differences among hybrids of Malus and Pyrus, and F2 offspring. This research has demonstrated and validated that these three marker types, along with metabolomics analysis are very powerful tools to detect and confirm hybridity of progeny derived from crosses between apple and pear in both cross directions. Furthermore, this work analysed the genus-specific metabolite patterns and the resistance to fire blight (Erwinia amylovora) in progeny. The findings of this work will enhance and accelerate the breeding of novel tree fruit crops that benefit producers and consumers, by enabling marker assisted selection of desired traits introgressed between pear and apple.
Collapse
Affiliation(s)
- Giulia Pasqualetto
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, UD 33100, Italy
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Hawke’s Bay Research Centre, Havelock North, New Zealand
| | - Luisa Palmieri
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | - Stefan Martens
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | - Vincent G M Bus
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Hawke’s Bay Research Centre, Havelock North, New Zealand
| | - David Chagné
- PFR, Fitzherbert Science Centre, Palmerston North, New Zealand
| | - Claudia Wiedow
- PFR, Fitzherbert Science Centre, Palmerston North, New Zealand
| | - Mickael A Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all'Adige, TN 38010, Italy
| | | |
Collapse
|
6
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Yang D, Li F, Wang J, Dong A, Wu R. A framework to model a web of linkage disequilibria for natural allotetraploid populations. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dengcheng Yang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Fan Li
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Jing Wang
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Ang Dong
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
| | - Rongling Wu
- Center for Computational Biology College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Center for Statistical Genetics Departments of Public Health Sciences and Statistics The Pennsylvania State University Hershey PA USA
| |
Collapse
|
8
|
Wang H, Dang J, Wu D, Xie Z, Yan S, Luo J, Guo Q, Liang G. Genotyping of polyploid plants using quantitative PCR: application in the breeding of white-fleshed triploid loquats (Eriobotrya japonica). PLANT METHODS 2021; 17:93. [PMID: 34479588 PMCID: PMC8418031 DOI: 10.1186/s13007-021-00792-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ploidy manipulation is effective in seedless loquat breeding, in which flesh color is a key agronomic and economic trait. Few techniques are currently available for detecting the genotypes of polyploids in plants, but this ability is essential for most genetic research and molecular breeding. RESULTS We developed a system for genotyping by quantitative PCR (qPCR) that allowed flesh color genotyping in multiple tetraploid and triploid loquat varieties (lines). The analysis of 13 different ratios of DNA mixtures between two homozygous diploids (AA and aa) showed that the proportion of allele A has a high correlation (R2 = 0.9992) with parameter b [b = a1/(a1 + a2)], which is derived from the two normalized allele signals (a1 and a2) provided by qPCR. Cluster analysis and variance analysis from simulating triploid and tetraploid hybrids provided completely correct allelic configurations. Four genotypes (AAA, AAa, Aaa, aaa) were found in triploid loquats, and four (AAAA, AAAa, AAaa, Aaaa; absence of aaaa homozygotes) were found in tetraploid loquats. DNA markers analysis showed that the segregation of flesh color in all F1 hybrids conformed to Mendel's law. When tetraploid B431 was the female parent, more white-fleshed triploids occurred among the progeny. CONCLUSIONS qPCR can detect the flesh color genotypes of loquat polyploids and provides an alternative method for analyzing polyploid genotype and breeding, dose effects and allele-specific expression.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Zhongyi Xie
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Shuang Yan
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Jingnan Luo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
9
|
Peng Z, Bredeson JV, Wu GA, Shu S, Rawat N, Du D, Parajuli S, Yu Q, You Q, Rokhsar DS, Gmitter FG, Deng Z. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1215-1232. [PMID: 32985030 PMCID: PMC7756384 DOI: 10.1111/tpj.14993] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.
Collapse
Affiliation(s)
- Ze Peng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Jessen V. Bredeson
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Guohong A. Wu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Nidhi Rawat
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Dongliang Du
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Saroj Parajuli
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Qibin Yu
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Qian You
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Daniel S. Rokhsar
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Frederick G. Gmitter
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Zhanao Deng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| |
Collapse
|
10
|
Ahmed D, Curk F, Evrard JC, Froelicher Y, Ollitrault P. Preferential Disomic Segregation and C. micrantha/C. medica Interspecific Recombination in Tetraploid 'Giant Key' Lime; Outlook for Triploid Lime Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:939. [PMID: 32670332 PMCID: PMC7330052 DOI: 10.3389/fpls.2020.00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/09/2020] [Indexed: 05/14/2023]
Abstract
The triploid 'Tahiti' lime (C. x latifolia (Yu. Tanaka) Tanaka) naturally originated from a merger between a haploid ovule of lemon (C. x limon (L.) Burm) and a diploid pollen from a 'Mexican' lime (C. x aurantiifolia (Christm.) Swing). The very limited natural inter-varietal diversity and gametic sterility of C. latifolia requires a phylogenomic based reconstruction breeding strategy to insure its diversification. We developed a strategy based on interploid hybridization between diploid lemon and the doubled diploid 'Giant Key' lime. This lime is a doubled diploid of 'Mexican' lime, itself a natural interspecific F1 hybrid between C. medica L. and C. micrantha Wester. For an optimized breeding program, we analyzed the meiotic behavior of the allotetraploid lime, the genetic structure of its diploid gametes, the interspecific recombination between C. medica and C. micrantha, and constructed its genetic map. A population of 272 triploid hybrids was generated using 'Giant Key' lime as pollinator. One hundred fifty-eight SNPs diagnostic of C. micrantha, regularly distributed throughout the citrus genome were successfully developed and applied. The genetic structure of the diploid gametes was examined based on C. micrantha doses along the genome. The diploid gametes transmitted in average 91.17% of the parental interspecific C. medica/C. micrantha heterozygosity. Three chromosomes (2, 8, and 9) showed disomic segregation with high preferential pairing values, while the remaining chromosomes showed an intermediate inheritance with a preferential disomic trend. A total of 131 SNPs were assigned to nine linkage groups to construct the genetic map. It spanned 272.8 cM with a low average recombination rate (0.99 cM Mb-1) and high synteny and colinearity with the reference clementine genome. Our results confirmed that an efficient reconstruction breeding strategy for 'Tahiti' lime is possible, based on interploid hybridization using a doubled diploid of C. aurantiifolia. The tetraploid parent should be selected for favorable agronomic traits and its genetic value should be efficiently inherited by the progeny thanks to transmission of the high level of parental heterozygosity. However, it would require developing numerous progeny to overcome the linkage drag caused by the limited interspecific recombination associated with the predominant disomic inheritance.
Collapse
Affiliation(s)
- Dalel Ahmed
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, San Giuliano, France
| | - Franck Curk
- UMR AGAP, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
11
|
Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum. Heredity (Edinb) 2020; 125:212-226. [PMID: 32523055 PMCID: PMC7490355 DOI: 10.1038/s41437-020-0328-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring autopolyploid species, such as the autotetraploid potato Solanum tuberosum, face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.
Collapse
|
12
|
Garavello M, Cuenca J, Garcia-Lor A, Ortega N, Navarro L, Ollitrault P, Aleza P. Male and female inheritance patterns in tetraploid 'Moncada' mandarin. PLANT CELL REPORTS 2020; 39:335-349. [PMID: 31781856 PMCID: PMC7018676 DOI: 10.1007/s00299-019-02494-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Tetraploid `Moncada´ mandarin, used as male and female in interploidy hybridizations, displays mainly tetrasomic inheritance for most LGs, with slight variations according to the direction of the crossing. Triploid-breeding programs in citrus are key tool to develop seedless cultivars. Obtaining triploid citrus hybrids may be achieved through different strategies, such as the exploitation of female unreduced gamete in crosses between diploid parents and diploid by tetraploid sexual hybridizations, in which tetraploid genotypes can be used as male or female parents. Genetic configuration of triploid populations from interploid crosses greatly depends on the chromosomic segregation mode of the tetraploid parent used. Here, we have analyzed the inheritance of the tetraploid 'Moncada' mandarin and compared the genetic structures of the resulting gametes when used as male and as female parent. The preferential chromosome pairing rate is calculated from the parental heterozygosity restitution (PHR) of codominant molecular markers, indicating the proportion between disomic and tetrasomic segregation. Tetraploid 'Moncada' both as female and male parent largely exhibited tetrasomic segregation. However, as female parent, one linkage group (LG8) showed intermediate segregation with tendency towards tetrasomic inheritance, while another linkage group (LG4) evidenced a clear intermediate segregation. On the other hand, when used as male parent two linkage groups (LG5 and LG6) showed values that fit an intermediate inheritance model with tetrasomic tendency. Significant doubled reduction (DR) rates were observed in five linkage groups as female parent, and in six linkage groups as male parent. The new knowledge generated here will serve to define crossing strategies in citrus improvement programs to efficiently obtain new varieties of interest in the global fresh consumption market.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
- INTA, Concordia Agricultural Experiment Station, 3200, Concordia, CC 34, Entre Ríos, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Andrés Garcia-Lor
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Neus Ortega
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche, Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Corse, 20230, San Giuliano, France.
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315, km 10.7, Moncada, 46113, Valencia, Spain.
| |
Collapse
|
13
|
Garavello M, Cuenca J, Dreissig S, Fuchs J, Houben A, Aleza P. Assessing Ploidy Level Analysis and Single Pollen Genotyping of Diploid and Euploid Citrus Genotypes by Fluorescence-Activated Cell Sorting and Whole-Genome Amplification. FRONTIERS IN PLANT SCIENCE 2019; 10:1174. [PMID: 31611896 PMCID: PMC6769063 DOI: 10.3389/fpls.2019.01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/27/2019] [Indexed: 05/06/2023]
Abstract
Flow cytometry is widely used to determine genome size and ploidy level in plants. This technique, when coupled with fluorescence-activated cell sorting (FACS), whole genome amplification and genotyping (WGA), opens up new opportunities for genetic studies of individualized nuclei. This strategy was used to analyze the genetic composition of single pollen nuclei of different citrus species. The flow cytometry and microscope observations allowed us to differentiate the populations of pollen nuclei present in the diploid and euploid genotypes analyzed, showing that citrus has binuclear pollen. We have identified in the "CSO" tangor an additional nuclei population composed by the vegetative plus generative nuclei. Genotyping of this nuclei population revealed that vegetative and generative nuclei show the same genetic configuration. In addition, we have demonstrated the presence of unreduced gametes in the diploid genotype "Mexican lime." Genomic amplification is a robust method for haploid nuclei genotyping with several molecular markers, whereas in diploid nuclei using heterozygous markers showed a bias towards one of the two alleles, limiting the use of this tool in this type of nuclei. We further discuss the importance and applications of single pollen genotyping in citrus genetic studies.
Collapse
Affiliation(s)
- Miguel Garavello
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- INTA, Concordia Agricultural Experiment Station, Concordia, Argentina
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
- *Correspondence: Pablo Aleza,
| |
Collapse
|