1
|
Jeon D, Kim C. Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:2087. [PMID: 39124204 PMCID: PMC11314605 DOI: 10.3390/plants13152087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The Brassicaceae family is distinguished by its inclusion of high-value crops such as cabbage, broccoli, mustard, and wasabi, all noted for their glucosinolates. In this family, many polyploidy species are distributed and shaped by numerous whole-genome duplications, independent genome doublings, and hybridization events. The evolutionary trajectory of the family is marked by enhanced diversification and lineage splitting after paleo- and meso-polyploidization, with discernible remnants of whole-genome duplications within their genomes. The recent neopolyploidization events notably increased the proportion of polyploid species within the family. Although sequencing efforts for the Brassicaceae genome have been robust, accurately distinguishing sub-genomes remains a significant challenge, frequently complicating the assembly process. Assembly strategies include comparative analyses with ancestral species and examining k-mers, long terminal repeat retrotransposons, and pollen sequencing. This review comprehensively explores the unique genomic characteristics of the Brassicaceae family, with a particular emphasis on polyploidization events and the latest strategies for sequencing and assembly. This review will significantly improve our understanding of polyploidy in the Brassicaceae family and assist in future genome assembly methods.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Changsoo Kim
- Department of Science in Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea;
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Aufiero G, Fruggiero C, D’Angelo D, D’Agostino N. Homoeologs in Allopolyploids: Navigating Redundancy as Both an Evolutionary Opportunity and a Technical Challenge-A Transcriptomics Perspective. Genes (Basel) 2024; 15:977. [PMID: 39202338 PMCID: PMC11353593 DOI: 10.3390/genes15080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Allopolyploidy in plants involves the merging of two or more distinct parental genomes into a single nucleus, a significant evolutionary process in the plant kingdom. Transcriptomic analysis provides invaluable insights into allopolyploid plants by elucidating the fate of duplicated genes, revealing evolutionary novelties and uncovering their environmental adaptations. By examining gene expression profiles, scientists can discern how duplicated genes have evolved to acquire new functions or regulatory roles. This process often leads to the development of novel traits and adaptive strategies that allopolyploid plants leverage to thrive in diverse ecological niches. Understanding these molecular mechanisms not only enhances our appreciation of the genetic complexity underlying allopolyploidy but also underscores their importance in agriculture and ecosystem resilience. However, transcriptome profiling is challenging due to genomic redundancy, which is further complicated by the presence of multiple chromosomes sets and the variations among homoeologs and allelic genes. Prior to transcriptome analysis, sub-genome phasing and homoeology inference are essential for obtaining a comprehensive view of gene expression. This review aims to clarify the terminology in this field, identify the most challenging aspects of transcriptome analysis, explain their inherent difficulties, and suggest reliable analytic strategies. Furthermore, bulk RNA-seq is highlighted as a primary method for studying allopolyploid gene expression, focusing on critical steps like read mapping and normalization in differential gene expression analysis. This approach effectively captures gene expression from both parental genomes, facilitating a comprehensive analysis of their combined profiles. Its sensitivity in detecting low-abundance transcripts allows for subtle differences between parental genomes to be identified, crucial for understanding regulatory dynamics and gene expression balance in allopolyploids.
Collapse
Affiliation(s)
| | | | | | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (G.A.); (C.F.); (D.D.)
| |
Collapse
|
3
|
Lim PK, Wang R, Mutwil M. LSTrAP-denovo: Automated Generation of Transcriptome Atlases for Eukaryotic Species Without Genomes. PHYSIOLOGIA PLANTARUM 2024; 176:e14407. [PMID: 38973613 DOI: 10.1111/ppl.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Despite the abundance of species with transcriptomic data, a significant number of species still lack sequenced genomes, making it difficult to study gene function and expression in these organisms. While de novo transcriptome assembly can be used to assemble protein-coding transcripts from RNA-sequencing (RNA-seq) data, the datasets used often only feature samples of arbitrarily selected or similar experimental conditions, which might fail to capture condition-specific transcripts. We developed the Large-Scale Transcriptome Assembly Pipeline for de novo assembled transcripts (LSTrAP-denovo) to automatically generate transcriptome atlases of eukaryotic species. Specifically, given an NCBI TaxID, LSTrAP-denovo can (1) filter undesirable RNA-seq accessions based on read data, (2) select RNA-seq accessions via unsupervised machine learning to construct a sample-balanced dataset for download, (3) assemble transcripts via over-assembly, (4) functionally annotate coding sequences (CDS) from assembled transcripts and (5) generate transcriptome atlases in the form of expression matrices for downstream transcriptomic analyses. LSTrAP-denovo is easy to implement, written in Python, and is freely available at https://github.com/pengkenlim/LSTrAP-denovo/.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ruoxi Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
5
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
6
|
Yan X, Shi G, Sun M, Shan S, Chen R, Li R, Wu S, Zhou Z, Li Y, Liu Z, Hu Y, Liu Z, Soltis PS, Zhang J, Soltis DE, Ning G, Bao M. Genome evolution of the ancient hexaploid Platanus × acerifolia (London planetree). Proc Natl Acad Sci U S A 2024; 121:e2319679121. [PMID: 38830106 PMCID: PMC11181145 DOI: 10.1073/pnas.2319679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.
Collapse
Affiliation(s)
- Xu Yan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Gehui Shi
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Miao Sun
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Runzhou Chen
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Runhui Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Songlin Wu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zheng Zhou
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Yuhan Li
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | | | - Yonghong Hu
- Shanghai Chenshan Botanical Garden, Shanghai201602, China
| | - Zhongjian Liu
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
| | - Jiaqi Zhang
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Biodiversity Institute, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32608
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, The College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
7
|
Winter MR, Taranto AP, Yimer HZ, Coomer Blundell A, Siddique S, Williamson VM, Lunt DH. Phased chromosome-scale genome assembly of an asexual, allopolyploid root-knot nematode reveals complex subgenomic structure. PLoS One 2024; 19:e0302506. [PMID: 38843263 PMCID: PMC11156385 DOI: 10.1371/journal.pone.0302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
We present the chromosome-scale genome assembly of the allopolyploid root-knot nematode Meloidogyne javanica. We show that the M. javanica genome is predominantly allotetraploid, comprising two subgenomes, A and B, that most likely originated from hybridisation of two ancestral parental species. The assembly was annotated using full-length non-chimeric transcripts, comparison to reference databases, and ab initio prediction techniques, and the subgenomes were phased using ancestral k-mer spectral analysis. Subgenome B appears to show fission of chromosomal contigs, and while there is substantial synteny between subgenomes, we also identified regions lacking synteny that may have diverged in the ancestral genomes prior to or following hybridisation. This annotated and phased genome assembly forms a significant resource for understanding the origins and genetics of these globally important plant pathogens.
Collapse
Affiliation(s)
- Michael R. Winter
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| | - Adam P. Taranto
- Department of Plant Pathology, University of California Davis, Davis, CA, United States of America
| | - Henok Zemene Yimer
- Department of Entomology and Nematology, University of California Davis, Davis, CA, United States of America
| | - Alison Coomer Blundell
- Department of Plant Pathology, University of California Davis, Davis, CA, United States of America
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, Davis, CA, United States of America
| | - Valerie M. Williamson
- Department of Plant Pathology, University of California Davis, Davis, CA, United States of America
| | - David H. Lunt
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
8
|
Zhu F, Lu J, Sun K, Deng C, Xu Y. Polyploidization of Indotyphlops braminus: evidence from isoform-sequencing. BMC Genom Data 2024; 25:23. [PMID: 38408920 PMCID: PMC10895795 DOI: 10.1186/s12863-024-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Indotyphlops braminus, the only known triploid parthenogenetic snake, is a compelling species for revealing the mechanism of polyploid emergence in vertebrates. METHODS In this study, we applied PacBio isoform sequencing technology to generate the first full-length transcriptome of I. braminus, aiming to improve the understanding of the molecular characteristics of this species. RESULTS A total of 51,849 nonredundant full-length transcript assemblies (with an N50 length of 2980 bp) from I. braminus were generated and fully annotated using various gene function databases. Our analysis provides preliminary evidence supporting a recent genome duplication event in I. braminus. Phylogenetic analysis indicated that the divergence of I. braminus subgenomes occurred approximately 11.5 ~ 15 million years ago (Mya). The full-length transcript resource generated as part of this research will facilitate transcriptome analysis and genomic evolution studies in the future.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China.
| | - Jing Lu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Ke Sun
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| | - Cao Deng
- Department of Bioinformatics, DNA Stories Bioinformatics Center, 610000, Chengdu, China
| | - Yu Xu
- School of Life Sciences, Guizhou Normal University, 550025, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
10
|
Serra Mari R, Schrinner S, Finkers R, Ziegler FMR, Arens P, Schmidt MHW, Usadel B, Klau GW, Marschall T. Haplotype-resolved assembly of a tetraploid potato genome using long reads and low-depth offspring data. Genome Biol 2024; 25:26. [PMID: 38243222 PMCID: PMC10797741 DOI: 10.1186/s13059-023-03160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
Potato is one of the world's major staple crops, and like many important crop plants, it has a polyploid genome. Polyploid haplotype assembly poses a major computational challenge. We introduce a novel strategy for the assembly of polyploid genomes and present an assembly of the autotetraploid potato cultivar Altus. Our method uses low-depth sequencing data from an offspring population to achieve chromosomal clustering and haplotype phasing on the assembly graph. Our approach generates high-quality assemblies of individual chromosomes with haplotype-specific sequence resolution of whole chromosome arms and can be applied in common breeding scenarios where collections of offspring are available.
Collapse
Affiliation(s)
- Rebecca Serra Mari
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven Schrinner
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Algorithmic Bioinformatics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Richard Finkers
- Gennovation B.V., Agro Business Park 10, 6708, PW, Wageningen, The Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Freya Maria Rosemarie Ziegler
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Forschungszentrum Jülich, Institute of Bio and Geosciences, Bioinformatics (IBG-4), Jülich, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, Jülich, Germany
- Biological Data Science, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maximilian H-W Schmidt
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Forschungszentrum Jülich, Institute of Bio and Geosciences, Bioinformatics (IBG-4), Jülich, Germany
| | - Björn Usadel
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Forschungszentrum Jülich, Institute of Bio and Geosciences, Bioinformatics (IBG-4), Jülich, Germany.
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, Jülich, Germany.
- Biological Data Science, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Gunnar W Klau
- Algorithmic Bioinformatics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Center for Digital Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Sato R, Kondo Y, Agarie S. The first released available genome of the common ice plant ( Mesembryanthemum crystallinum L.) extended the research region on salt tolerance, C 3-CAM photosynthetic conversion, and halophilism. F1000Res 2024; 12:448. [PMID: 38618020 PMCID: PMC11016173 DOI: 10.12688/f1000research.129958.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background The common ice plant ( Mesembryanthemum crystallinum L.) is an annual herb belonging to the genus Mesembryanthemum of the family Aizoaceae, native to Southern Africa. Methods We performed shotgun genome paired-end sequencing using the Illumina platform to determine the genome sequence of the ice plants. We assembled the whole genome sequences using the genome assembler "ALGA" and "Redundans", then released them as available genomic information. Finally, we mainly estimated the potential genomic function by the homology search method. Results A draft genome was generated with a total length of 286 Mb corresponding to 79.2% of the estimated genome size (361 Mb), consisting of 49,782 contigs. It encompassed 93.49% of the genes of terrestrial higher plants, 99.5% of the ice plant transcriptome, and 100% of known DNA sequences. In addition, 110.9 Mb (38.8%) of repetitive sequences and untranslated regions, 971 tRNA, and 100 miRNA loci were identified, and their effects on stress tolerance and photosynthesis were investigated. Molecular phylogenetic analysis based on ribosomal DNA among 26 kinds of plant species revealed genetic similarity between the ice plant and poplar, which have salt tolerance. Overall, 35,702 protein-coding regions were identified in the genome, of which 56.05% to 82.59% were annotated and submitted to domain searches and gene ontology (GO) analyses, which found that eighteen GO terms stood out among five plant species. These terms were related to biological defense, growth, reproduction, transcription, post-transcription, and intermembrane transportation, regarded as one of the fundamental results of using the utilized ice plant genome. Conclusions The information that we characterized is useful for elucidation of the mechanism of growth promotion under salinity and reversible conversion of the photosynthetic type from C3 to Crassulacean Acid Metabolism (CAM).
Collapse
Affiliation(s)
- Ryoma Sato
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Yuri Kondo
- Graduate school of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| | - Sakae Agarie
- Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Chung FY, Lin YZ, Huang CR, Huang KW, Chen YF. Crosslinking kiwifruit-derived DNA with natural aromatic aldehydes generates membranolytic antibacterial nanogels. Int J Biol Macromol 2024; 255:127947. [PMID: 37951422 DOI: 10.1016/j.ijbiomac.2023.127947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Improper use of antibiotics has led to the global rise of drug-resistant biofilm bacteria. Thus, researchers have been increasingly interested in green materials that are highly biocompatible and have low toxicity. Here, nanogels (NGs) with imine bonds were synthesized by crosslinking kiwifruit-derived DNA's primary amine and aromatic aldehydes (cuminaldehyde, p-anisaldehyde, or vanillin) under water-in-hexane emulsion processes. Transmission electron microscope showed that the NGs had spherical geometry with an average particle size ranging from 40 to 140 nm and that the zeta potential indicated a negative charge. Additionally, the DNA-aromatic aldehyde NGs showed low cytotoxicity toward normal cell organoids and human RBCs in cell viability tests. These NGs were also tested against four pathogenic bacteria for various assays. DNA-vanillin (DNA-VA) NGs exhibited significant antibacterial effects against bacteria with very low inhibitory concentrations as seen in a minimum inhibitory concentration assay. Scanning electron microscope observation revealed that the bacteria were deformed, and immunoblotting detected intracellular groEL protein expression. In agreement with these results, DNA-aromatic aldehyde NGs successfully protected C. elegans from P. aeruginosa-induced lethality. These DNA NGs provided a multivalent 3D space for antibacterial aromatic aldehydes to tether, enhancing their interaction with the bacterial wall. These results offer a new direction for the development of novel antibiotics in the future.
Collapse
Affiliation(s)
- Fang-Yu Chung
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Rd., Taitung 95092, Taiwan
| | - Yi-Zhen Lin
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Rd., Taitung 95092, Taiwan
| | - Cheng-Rung Huang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, No. 1, University Rd., East Dist., Tainan 70101, Taiwan
| | - Kuan-Wen Huang
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Rd., Taitung 95092, Taiwan
| | - Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Rd., Taitung 95092, Taiwan.
| |
Collapse
|
13
|
Ouadi S, Sierro N, Kessler F, Ivanov NV. Chromosome-scale assemblies of S. malaccense, S. aqueum, S. jambos, and S. syzygioides provide insights into the evolution of Syzygium genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1248780. [PMID: 37868305 PMCID: PMC10587690 DOI: 10.3389/fpls.2023.1248780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/24/2023]
Abstract
Syzygium is a large and diverse tree genus in the Myrtaceae family. Genome assemblies for clove (Syzygium aromaticum, 370 Mb) and sea apple (Syzygium grande, 405 Mb) provided the first insights into the genomic features and evolution of the Syzygium genus. Here, we present additional de novo chromosome-scale genome assemblies for Syzygium malaccense, Syzygium aqueum, Syzygium jambos, and Syzygium syzygioides. Genome profiling analyses show that S. malaccense, like S. aromaticum and S. grande, is diploid (2n = 2x = 22), while the S. aqueum, S. jambos, and S. syzygioides specimens are autotetraploid (2n = 4x = 44). The genome assemblies of S. malaccense (430 Mb), S. aqueum (392 Mb), S. jambos (426 Mb), and S. syzygioides (431 Mb) are highly complete (BUSCO scores of 98%). Comparative genomics analyses showed conserved organization of the 11 chromosomes with S. aromaticum and S. grande, and revealed species-specific evolutionary dynamics of the long terminal repeat retrotransposon elements belonging to the Gypsy and Copia lineages. This set of Syzygium genomes is a valuable resource for future structural and functional comparative genomic studies on Myrtaceae species.
Collapse
Affiliation(s)
- Sonia Ouadi
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Felix Kessler
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Faculty of Sciences, Laboratory of Plant Physiology, University of Neuchâtel, Neuchâtel, Switzerland
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
14
|
Naithani S, Deng CH, Sahu SK, Jaiswal P. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes. Biomolecules 2023; 13:1403. [PMID: 37759803 PMCID: PMC10527062 DOI: 10.3390/biom13091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The availability of multiple sequenced genomes from a single species made it possible to explore intra- and inter-specific genomic comparisons at higher resolution and build clade-specific pan-genomes of several crops. The pan-genomes of crops constructed from various cultivars, accessions, landraces, and wild ancestral species represent a compendium of genes and structural variations and allow researchers to search for the novel genes and alleles that were inadvertently lost in domesticated crops during the historical process of crop domestication or in the process of extensive plant breeding. Fortunately, many valuable genes and alleles associated with desirable traits like disease resistance, abiotic stress tolerance, plant architecture, and nutrition qualities exist in landraces, ancestral species, and crop wild relatives. The novel genes from the wild ancestors and landraces can be introduced back to high-yielding varieties of modern crops by implementing classical plant breeding, genomic selection, and transgenic/gene editing approaches. Thus, pan-genomic represents a great leap in plant research and offers new avenues for targeted breeding to mitigate the impact of global climate change. Here, we summarize the tools used for pan-genome assembly and annotations, web-portals hosting plant pan-genomes, etc. Furthermore, we highlight a few discoveries made in crops using the pan-genomic approach and future potential of this emerging field of study.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Cecilia H. Deng
- Molecular & Digital Breeing Group, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand;
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China;
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
15
|
May D, Sanchez S, Gilby J, Altpeter F. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass ( Paspalum notatum Flüggé) using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1225775. [PMID: 37521929 PMCID: PMC10373592 DOI: 10.3389/fpls.2023.1225775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.
Collapse
Affiliation(s)
- David May
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer Gilby
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Cellular and Molecular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
18
|
Li H, Sun P, Wang Y, Zhang Z, Yang J, Suo Y, Han W, Diao S, Li F, Fu J. Allele-aware chromosome-level genome assembly of the autohexaploid Diospyros kaki Thunb. Sci Data 2023; 10:270. [PMID: 37169805 PMCID: PMC10175270 DOI: 10.1038/s41597-023-02175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Artificially improving persimmon (Diospyros kaki Thunb.), one of the most important fruit trees, remains challenging owing to the lack of reference genomes. In this study, we generated an allele-aware chromosome-level genome assembly for the autohexaploid persimmon 'Xiaoguotianshi' (Chinese-PCNA type) using PacBio CCS and Hi-C technology. The final assembly contained 4.52 Gb, with a contig N50 value of 5.28 Mb and scaffold N50 value of 44.01 Mb, of which 4.06 Gb (89.87%) of the assembly were anchored onto 90 chromosome-level pseudomolecules comprising 15 homologous groups with 6 allelic chromosomes in each. A total of 153,288 protein-coding genes were predicted, of which 98.60% were functionally annotated. Repetitive sequences accounted for 64.02% of the genome; and 110,480 rRNAs, 12,297 tRNAs, 1,483 miRNAs, and 3,510 snRNA genes were also identified. This genome assembly fills the knowledge gap in the autohexaploid persimmon genome, which is conducive in the study on the regulatory mechanisms underlying the major economically advantageous traits of persimmons and promoting breeding programs.
Collapse
Affiliation(s)
- Huawei Li
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha, 410004, China
| | - Peng Sun
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yiru Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Shanghai, 201602, China
| | - Yujing Suo
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weijuan Han
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Songfeng Diao
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Fangdong Li
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
| | - Jianmin Fu
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
19
|
Mierke F, Brink DP, Norbeck J, Siewers V, Andlid T. Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates. Fungal Genet Biol 2023; 166:103783. [PMID: 36870442 DOI: 10.1016/j.fgb.2023.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pseudozyma hubeiensis is a basidiomycete yeast that has the highly desirable traits for lignocellulose valorisation of being equally efficient at utilization of glucose and xylose, and capable of their co-utilization. The species has previously mainly been studied for its capacity to produce secreted biosurfactants in the form of mannosylerythritol lipids, but it is also an oleaginous species capable of accumulating high levels of triacylglycerol storage lipids during nutrient starvation. In this study, we aimed to further characterize the oleaginous nature of P. hubeiensis by evaluating metabolism and gene expression responses during storage lipid formation conditions with glucose or xylose as a carbon source. The genome of the recently isolated P. hubeiensis BOT-O strain was sequenced using MinION long-read sequencing and resulted in the most contiguous P. hubeiensis assembly to date with 18.95 Mb in 31 contigs. Using transcriptome data as experimental support, we generated the first mRNA-supported P. hubeiensis genome annotation and identified 6540 genes. 80% of the predicted genes were assigned functional annotations based on protein homology to other yeasts. Based on the annotation, key metabolic pathways in BOT-O were reconstructed, including pathways for storage lipids, mannosylerythritol lipids and xylose assimilation. BOT-O was confirmed to consume glucose and xylose at equal rates, but during mixed glucose-xylose cultivation glucose was found to be taken up faster. Differential expression analysis revealed that only a total of 122 genes were significantly differentially expressed at a cut-off of |log2 fold change| ≥ 2 when comparing cultivation on xylose with glucose, during exponential growth and during nitrogen-starvation. Of these 122 genes, a core-set of 24 genes was identified that were differentially expressed at all time points. Nitrogen-starvation resulted in a larger transcriptional effect, with a total of 1179 genes with significant expression changes at the designated fold change cut-off compared with exponential growth on either glucose or xylose.
Collapse
Affiliation(s)
- Friederike Mierke
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
20
|
Polyploid SNP Genotyping Using the MassARRAY System. Methods Mol Biol 2023; 2638:93-113. [PMID: 36781637 DOI: 10.1007/978-1-0716-3024-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Molecular marker discovery and genotyping are major challenges in polyploid breeding programs incorporating molecular biology tools. In this context, this work describes a method for single nucleotide polymorphism (SNP) genotyping in polyploid crops using matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, the MassARRAY System.
Collapse
|
21
|
Abstract
Polyploidizations, or whole-genome duplications (WGDs), in plants have increased biological complexity, facilitated evolutionary innovation, and likely enabled adaptation under harsh conditions. Besides genomic data, transcriptome data have been widely employed to detect WGDs, due to their efficient accessibility to the gene space of a species. Age distributions based on synonymous substitutions (so-called KS age distributions) for paralogs assembled from transcriptome data have identified numerous WGDs in plants, paving the way for further studies on the importance of WGDs for the evolution of seed and flowering plants. However, it is still unclear how transcriptome-based age distributions compare to those based on genomic data. In this chapter, we implemented three different de novo transcriptome assembly pipelines with two popular assemblers, i.e., Trinity and SOAPdenovo-Trans. We selected six plant species with published genomes and transcriptomes to evaluate how assembled transcripts from different pipelines perform when using KS distributions to detect previously documented WGDs in the six species. Further, using genes predicted in each genome as references, we evaluated the effects of missing genes, gene family clustering, and de novo assembled transcripts on the transcriptome-based KS distributions. Our results show that, although the transcriptome-based KS distributions differ from the genome-based ones with respect to their shapes and scales, they are still reasonably reliable for unveiling WGDs, except in species where most duplicates originated from a recent WGD. We also discuss how to overcome some possible pitfalls when using transcriptome data to identify WGDs.
Collapse
Affiliation(s)
- Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Sun M, Pang E, Bai WN, Zhang DY, Lin K. ploidyfrost: Reference-free estimation of ploidy level from whole genome sequencing data based on de Bruijn graphs. Mol Ecol Resour 2023; 23:499-510. [PMID: 36239149 PMCID: PMC10092044 DOI: 10.1111/1755-0998.13720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/04/2023]
Abstract
Polyploidy is ubiquitous and its consequences are complex and variable. A change of ploidy level generally influences genetic diversity and results in morphological, physiological and ecological differences between cells or organisms with different ploidy levels. To avoid cumbersome experiments and take advantage of the less biased information provided by the vast amounts of genome sequencing data, computational tools for ploidy estimation are urgently needed. Until now, although a few such tools have been developed, many aspects of this estimation, such as the requirement of a reference genome, the lack of informative results and objective inferences, and the influence of false positives from errors and repeats, need further improvement. We have developed ploidyfrost, a de Bruijn graph-based method, to estimate ploidy levels from whole genome sequencing data sets without a reference genome. ploidyfrost provides a visual representation of allele frequency distribution generated using the ggplot2 package as well as quantitative results using the Gaussian mixture model. In addition, it takes advantage of colouring information encoded in coloured de Bruijn graphs to analyse multiple samples simultaneously and to flexibly filter putative false positives. We evaluated the performance of ploidyfrost by analysing highly heterozygous or repetitive samples of Cyclocarya paliurus and a complex allooctoploid sample of Fragaria × ananassa. Moreover, we demonstrated that the accuracy of analysis results can be improved by constraining a threshold such as Cramér's V coefficient on variant features, which may significantly reduce the side effects of sequencing errors and annoying repeats on the graphical structure constructed.
Collapse
Affiliation(s)
- Mingzhu Sun
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Erli Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
23
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
24
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, Tang H. Sequencing and Assembly of Polyploid Genomes. Methods Mol Biol 2023; 2545:429-458. [PMID: 36720827 DOI: 10.1007/978-1-0716-2561-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.
Collapse
Affiliation(s)
- Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
25
|
Lötter A, Duong TA, Candotti J, Mizrachi E, Wegrzyn JL, Myburg AA. Haplogenome assembly reveals structural variation in Eucalyptus interspecific hybrids. Gigascience 2022; 12:giad064. [PMID: 37632754 PMCID: PMC10460159 DOI: 10.1093/gigascience/giad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 07/27/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND De novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FINDINGS Using Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. CONCLUSIONS Knowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees.
Collapse
Affiliation(s)
- Anneri Lötter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Julia Candotti
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269, USA
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria 0028, South Africa
| |
Collapse
|
26
|
Martin SL, Lujan Toro B, James T, Sauder CA, Laforest M. Insights from the genomes of 4 diploid Camelina spp. G3 (BETHESDA, MD.) 2022; 12:jkac182. [PMID: 35976116 PMCID: PMC9713399 DOI: 10.1093/g3journal/jkac182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/12/2022] [Indexed: 11/12/2022]
Abstract
Plant evolution has been a complex process involving hybridization and polyploidization making understanding the origin and evolution of a plant's genome challenging even once a published genome is available. The oilseed crop, Camelina sativa (Brassicaceae), has a fully sequenced allohexaploid genome with 3 unknown ancestors. To better understand which extant species best represent the ancestral genomes that contributed to C. sativa's formation, we sequenced and assembled chromosome level draft genomes for 4 diploid members of Camelina: C. neglecta C. hispida var. hispida, C. hispida var. grandiflora, and C. laxa using long and short read data scaffolded with proximity data. We then conducted phylogenetic analyses on regions of synteny and on genes described for Arabidopsis thaliana, from across each nuclear genome and the chloroplasts to examine evolutionary relationships within Camelina and Camelineae. We conclude that C. neglecta is closely related to C. sativa's sub-genome 1 and that C. hispida var. hispida and C. hispida var. grandiflora are most closely related to C. sativa's sub-genome 3. Further, the abundance and density of transposable elements, specifically Helitrons, suggest that the progenitor genome that contributed C. sativa's sub-genome 3 maybe more similar to the genome of C. hispida var. hispida than that of C. hispida var. grandiflora. These diploid genomes show few structural differences when compared to C. sativa's genome indicating little change to chromosome structure following allopolyploidization. This work also indicates that C. neglecta and C. hispida are important resources for understanding the genetics of C. sativa and potential resources for crop improvement.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Beatriz Lujan Toro
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Connie A Sauder
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0CA, Canada
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
27
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
28
|
Muñoz-Barrera A, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Lorenzo-Salazar JM, González-Montelongo R, García-Olivares V, Flores C. From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life (Basel) 2022; 12:1939. [PMID: 36431075 PMCID: PMC9695713 DOI: 10.3390/life12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
29
|
Zhang H, Wafula EK, Eilers J, Harkess A, Ralph PE, Timilsena PR, dePamphilis CW, Waite JM, Honaas LA. Building a foundation for gene family analysis in Rosaceae genomes with a novel workflow: A case study in Pyrus architecture genes. FRONTIERS IN PLANT SCIENCE 2022; 13:975942. [PMID: 36452099 PMCID: PMC9702816 DOI: 10.3389/fpls.2022.975942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 05/26/2023]
Abstract
The rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear (Pyrus communis). An efficient way to identify genetic factors for important traits in non-model organisms can be to transfer knowledge across genomes. However, major obstacles exist, including complex evolutionary histories and variable quality and content of publicly available plant genomes. As researchers aim to link genes to traits of interest, these challenges can impede the transfer of experimental evidence across plant species, namely in the curation of high-quality, high-confidence gene models in an evolutionary context. Here we present a workflow using a collection of bioinformatic tools for the curation of deeply conserved gene families of interest across plant genomes. To study gene families involved in tree architecture in European pear and other rosaceous species, we used our workflow, plus a draft genome assembly and high-quality annotation of a second P. communis cultivar, 'd'Anjou.' Our comparative gene family approach revealed significant issues with the most recent 'Bartlett' genome - primarily thousands of missing genes due to methodological bias. After correcting assembly errors on a global scale in the 'Bartlett' genome, we used our workflow for targeted improvement of our genes of interest in both P. communis genomes, thus laying the groundwork for future functional studies in pear tree architecture. Further, our global gene family classification of 15 genomes across 6 genera provides a valuable and previously unavailable resource for the Rosaceae research community. With it, orthologs and other gene family members can be easily identified across any of the classified genomes. Importantly, our workflow can be easily adopted for any other plant genomes and gene families of interest.
Collapse
Affiliation(s)
- Huiting Zhang
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Eric K. Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jon Eilers
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Alex E. Harkess
- College of Agriculture, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Paula E. Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Claude W. dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Jessica M. Waite
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| | - Loren A. Honaas
- Tree Fruit Research Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Wenatchee, WA, United States
| |
Collapse
|
30
|
Paril J, Pandey G, Barnett EM, Rane RV, Court L, Walsh T, Fournier-Level A. Rounding up the annual ryegrass genome: High-quality reference genome of Lolium rigidum. Front Genet 2022; 13:1012694. [PMID: 36386808 PMCID: PMC9664059 DOI: 10.3389/fgene.2022.1012694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
The genome of the major agricultural weed species, annual ryegrass (Lolium rigidum) was assembled, annotated and analysed. Annual ryegrass is a major weed in grain cropping, and has the remarkable capacity to evolve resistance to herbicides with various modes of action. The chromosome-level assembly was achieved using short- and long-read sequencing in combination with Hi-C mapping. The assembly size is 2.44 Gb with N50 = 361.79 Mb across 1,764 scaffolds where the seven longest sequences correspond to the seven chromosomes. Genome completeness assessed through BUSCO returned a 99.8% score for complete (unique and duplicated) and fragmented genes using the Viridiplantae set. We found evidence for the expansion of herbicide resistance-related gene families including detoxification genes. The reference genome of L. rigidum is a critical asset for leveraging genetic information for the management of this highly problematic weed species.
Collapse
Affiliation(s)
- Jefferson Paril
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Emma M. Barnett
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Rahul V. Rane
- CSIRO Health and Biosecurity, Parkville, VIC, Australia
| | - Leon Court
- CSIRO Land and Water, Acton, ACT, Australia
| | | | - Alexandre Fournier-Level
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Alexandre Fournier-Level,
| |
Collapse
|
31
|
Dvorianinova EM, Bolsheva NL, Pushkova EN, Rozhmina TA, Zhuchenko AA, Novakovskiy RO, Povkhova LV, Sigova EA, Zhernova DA, Borkhert EV, Kaluzhny DN, Melnikova NV, Dmitriev AA. Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome. Int J Mol Sci 2022; 23:13244. [PMID: 36362031 PMCID: PMC9656206 DOI: 10.3390/ijms232113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.
Collapse
Affiliation(s)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
32
|
Anil Kumar S, Hima Kumari P, Nagaraju M, Sudhakar Reddy P, Durga Dheeraj T, Mack A, Katam R, Kavi Kishor PB. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:965530. [PMID: 36119582 PMCID: PMC9478208 DOI: 10.3389/fpls.2022.965530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms.
Collapse
Affiliation(s)
- S. Anil Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - P. Hima Kumari
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Marka Nagaraju
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | | | - T. Durga Dheeraj
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Alexis Mack
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biology, Florida State University, Tallahassee, FL, United States
| | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| |
Collapse
|
33
|
Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol 2022; 20:106. [PMID: 35838847 PMCID: PMC9287518 DOI: 10.1186/s43141-022-00394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In recent years, major advance in molecular biology and genomic technologies have led to an exponential growth in biological information. As the deluge of genomic information, there is a parallel growth in the demands of tools in the storage and management of data, and the development of software for analysis, visualization, modelling, and prediction of large data set. MAIN BODY Particularly in plant biotechnology, the amount of information has multiplied exponentially with a large number of databases available from many individual plant species. Efficient bioinformatics tools and methodologies are also developed to allow rapid genome sequence and the study of plant genome in the 'omics' approach. This review focuses on the various bioinformatic applications in plant biotechnology, and their advantages in improving the outcome in agriculture. The challenges or limitations faced in plant biotechnology in the aspect of bioinformatics approach that explained the low progression in plant genomics than in animal genomics are also reviewed and assessed. CONCLUSION There is a critical need for effective bioinformatic tools, which are able to provide longer reads with unbiased coverage in order to overcome the complexity of the plant's genome. The advancement in bioinformatics is not only beneficial to the field of plant biotechnology and agriculture sectors, but will also contribute enormously to the future of humanity.
Collapse
Affiliation(s)
- Yung Cheng Tan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Guk J, Jang M, Choi J, Lee YM, Kim S. De novo phasing resolves haplotype sequences in complex plant genomes. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1031-1041. [PMID: 35332665 PMCID: PMC9129073 DOI: 10.1111/pbi.13815] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/07/2022] [Accepted: 03/20/2022] [Indexed: 05/12/2023]
Abstract
Genome phasing is a recently developed assembly method that separates heterozygous eukaryotic genomic regions and builds haplotype-resolved assemblies. Because differences between haplotypes are ignored in most published de novo genomes, assemblies are available as consensus genomes consisting of haplotype mixtures, thus increasing the need for genome phasing. Here, we review the operating principles and characteristics of several freely available and widely used phasing tools (TrioCanu, FALCON-Phase, and ALLHiC). An examination of downstream analyses using haplotype-resolved genome assemblies in plants indicated significant differences among haplotypes regarding chromosomal rearrangements, sequence insertions, and expression of specific alleles that contribute to the acquisition of the biological characteristics of plant species. Finally, we suggest directions to solve addressing limitations of current genome-phasing methods. This review provides insights into the current progress, limitations, and future directions of de novo genome phasing, which will enable researchers to easily access and utilize genome-phasing in studies involving highly heterozygous complex plant genomes.
Collapse
Affiliation(s)
- Ji‐Yoon Guk
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Min‐Jeong Jang
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Jin‐Wook Choi
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Yeon Mi Lee
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| | - Seungill Kim
- Department of Environmental HorticultureUniversity of SeoulSeoulKorea
| |
Collapse
|
35
|
Cheng A, Mohd Hanafiah N, Harikrishna JA, Eem LP, Baisakh N, Mispan MS. A Reappraisal of Polyploidy Events in Grasses (Poaceae) in a Rapidly Changing World. BIOLOGY 2022; 11:biology11050636. [PMID: 35625365 PMCID: PMC9138248 DOI: 10.3390/biology11050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Around 80% of megaflora species became extinct at the Cretaceous–Paleogene (K–Pg) boundary. Subsequent polyploidy events drove the survival of thousands of plant species and played a significant historical role in the development of the most successful modern cereal crops. However, current and rapid global temperature change poses an urgent threat to food crops worldwide, including the world’s big three cereals: rice, wheat, and maize, which are members of the grass family, Poaceae. Some minor cereals from the same family (such as teff) have grown in popularity in recent years, but there are important knowledge gaps regarding the similarities and differences between major and minor crops, including how polyploidy affects their biological processes under natural and (a)biotic stress conditions and thus the potential to harness polyploidization attributes for improving crop climate resilience. This review focuses on the impact of polyploidy events on the Poaceae family, which includes the world’s most important food sources, and discusses the past, present, and future of polyploidy research for major and minor crops. The increasing accessibility to genomes of grasses and their wild progenitors together with new tools and interdisciplinary research on polyploidy can support crop improvement for global food security in the face of climate change.
Collapse
Affiliation(s)
- Acga Cheng
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Noraikim Mohd Hanafiah
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lim Phaik Eem
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Correspondence: (N.B.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (N.B.); (M.S.M.)
| |
Collapse
|
36
|
Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing: achievements and challenges. TRENDS IN PLANT SCIENCE 2022; 27:391-401. [PMID: 34782248 DOI: 10.1016/j.tplants.2021.10.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 05/27/2023]
Abstract
Publication of the complete genome sequence of Arabidopsis thaliana, the first plant reference genome, in December 2000 heralded the beginning of the plant genome era. Over the past 20 years reference genomes have been generated for hundreds of plant species, spanning non-vascular to flowering plants. Releasing these plant genomes has dramatically advanced studies in all disciplines of plant biology. Importantly, multiple reference-level genomes have been generated for the major crops and their progenitors, enabling the creation of pan-genomes and exploration of domestication history and natural variations that can be adopted by modern crop breeding. We summarize the progress of plant genome sequencing and the challenges of sequencing more complex plant genomes and generating pan-genomes.
Collapse
Affiliation(s)
- Yanqing Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China; Zhejiang University City College School of Medicine, Hangzhou, China.
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
37
|
Clark LV, Mays W, Lipka AE, Sacks EJ. A population-level statistic for assessing Mendelian behavior of genotyping-by-sequencing data from highly duplicated genomes. BMC Bioinformatics 2022; 23:101. [PMID: 35317727 PMCID: PMC8939213 DOI: 10.1186/s12859-022-04635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Given the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis. The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires genotyping to be performed first at a high computational cost, whereas counting the number of sequence tags detected per genotype is computationally quick but very ineffective in inbred or polyploid populations. Therefore, new methods are needed for filtering paralogs. Results We introduce a novel statistic, Hind/HE, that uses the probability that two reads sampled from a genotype will belong to different alleles, instead of observed heterozygosity. The expected value of Hind/HE is the same across all loci in a dataset, regardless of read depth or allele frequency. In contrast to methods based on observed heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. In addition to filtering paralogs, it can be used to filter loci with null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid status. We demonstrate that the statistic is useful at read depths as low as five to 10, well below the depth needed for accurate genotype calling in polyploid and outcrossing species. Conclusions Our methodology for estimating Hind/HE across loci and individuals, as well as determining reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available at https://github.com/lvclark/polyRAD. In large sequencing datasets, we anticipate that the ability to filter markers and identify problematic individuals prior to genotype calling will save researchers considerable computational time. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04635-9.
Collapse
Affiliation(s)
- Lindsay V Clark
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Wittney Mays
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik J Sacks
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
38
|
Isolation and Molecular Characterisation of TtDro1A and TtDro1B Genes from Triticum turgidum Subspecies durum and turgidum, Study of Their Influences on Seedling Root Angles. PLANTS 2022; 11:plants11060821. [PMID: 35336704 PMCID: PMC8954752 DOI: 10.3390/plants11060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022]
Abstract
Durum wheat (Triticum turgidum, 2n = 4x = AABB) includes several subspecies with differential characteristics in their root system architecture (RSA). Subspecies durum has longer and more vertical roots, while subspecies turgidum has smaller and shallower roots. The homeologous genes TtDro1A and TtDro1B of both subspecies have been identified and found to differ in their sizes, sequences and the proteins they encode. To determine whether there is a relationship between the level of expression of these two genes and the angle adopted by the roots of durum wheat seedlings, their expressions has been studied by RT-qPCR, both in the primary seminal root and in the other seminal roots. The results of the analyses showed that the TtDro1A gene is expressed 1.4 times more in the primary seminal root than in the other seminal roots. Furthermore, this gene is expressed 2.49 to 8.76 times more than TtDro1B depending on root type (primary or seminal) and subspecies. There are positive correlations between the expression ratio of both genes (TtDro1A/TtDro1B) and the mean of all root angles, the most vertical root angle and the most horizontal root angle of the seedlings. The higher the expression of TtDro1B gene, the lower the root growth angles.
Collapse
|
39
|
Franco FF, Amaral DT, Bonatelli IAS, Romeiro-Brito M, Telhe MC, Moraes EM. Evolutionary Genetics of Cacti: Research Biases, Advances and Prospects. Genes (Basel) 2022; 13:452. [PMID: 35328006 PMCID: PMC8952820 DOI: 10.3390/genes13030452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Here, we present a review of the studies of evolutionary genetics (phylogenetics, population genetics, and phylogeography) using genetic data as well as genome scale assemblies in Cactaceae (Caryophyllales, Angiosperms), a major lineage of succulent plants with astonishing diversity on the American continent. To this end, we performed a literature survey (1992-2021) to obtain detailed information regarding key aspects of studies investigating cactus evolution. Specifically, we summarize the advances in the following aspects: molecular markers, species delimitation, phylogenetics, hybridization, biogeography, and genome assemblies. In brief, we observed substantial growth in the studies conducted with molecular markers in the past two decades. However, we found biases in taxonomic/geographic sampling and the use of traditional markers and statistical approaches. We discuss some methodological and social challenges for engaging the cactus community in genomic research. We also stressed the importance of integrative approaches, coalescent methods, and international collaboration to advance the understanding of cactus evolution.
Collapse
Affiliation(s)
- Fernando Faria Franco
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, Brazil; (F.F.F.); (D.T.A.); (M.R.-B.); (M.C.T.)
| | - Danilo Trabuco Amaral
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, Brazil; (F.F.F.); (D.T.A.); (M.R.-B.); (M.C.T.)
- Programa de Pós-graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-901, Brazil
| | - Isabel A. S. Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo (UNIFESP), Diadema, São Paulo 04021-001, Brazil;
| | - Monique Romeiro-Brito
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, Brazil; (F.F.F.); (D.T.A.); (M.R.-B.); (M.C.T.)
| | - Milena Cardoso Telhe
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, Brazil; (F.F.F.); (D.T.A.); (M.R.-B.); (M.C.T.)
| | - Evandro Marsola Moraes
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, Brazil; (F.F.F.); (D.T.A.); (M.R.-B.); (M.C.T.)
| |
Collapse
|
40
|
Zheng Y, Yang D, Rong J, Chen L, Zhu Q, He T, Chen L, Ye J, Fan L, Gao Y, Zhang H, Gu L. Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:649-670. [PMID: 34990066 DOI: 10.1111/jipb.13217] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 05/25/2023]
Abstract
Dendrocalamus latiflorus Munro is a woody clumping bamboo with rapid shoot growth. Both genetic transformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing techniques are available for D. latiflorus, enabling reverse genetic approaches. Thus, D. latiflorus has the potential to be a model bamboo species. However, the genome sequence of D. latiflorus has remained unreported due to its polyploidy and large genome size. Here, we sequenced the D. latiflorus genome and assembled it into three allele-aware subgenomes (AABBCC), representing the largest genome of a major bamboo species. We assembled 70 allelic chromosomes (2, 737 Mb) for hexaploid D. latiflorus using both single-molecule sequencing from the Pacific Biosciences (PacBio) Sequel platform and chromosome conformation capture sequencing (Hi-C). Repetitive sequences comprised 52.65% of the D. latiflorus genome. We annotated 135 231 protein-coding genes in the genome based on transcriptomes from eight different tissues. Transcriptome sequencing using RNA-Seq and PacBio single-molecule real-time long-read isoform sequencing revealed highly differential alternative splicing (AS) between non-abortive and abortive shoots, suggesting that AS regulates the abortion rate of bamboo shoots. This high-quality hexaploid genome and comprehensive strand-specific transcriptome datasets for this Poaceae family member will pave the way for bamboo research using D. latiflorus as a model species.
Collapse
Affiliation(s)
- Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deming Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jundong Rong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liguang Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianyou He
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingyan Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Ye
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lili Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
41
|
Cooke DP, Wedge DC, Lunter G. Benchmarking small-variant genotyping in polyploids. Genome Res 2022; 32:403-408. [PMID: 34965940 PMCID: PMC8805713 DOI: 10.1101/gr.275579.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
Genotyping from sequencing is the basis of emerging strategies in the molecular breeding of polyploid plants. However, compared with the situation for diploids, in which genotyping accuracies are confidently determined with comprehensive benchmarks, polyploids have been neglected; there are no benchmarks measuring genotyping error rates for small variants using real sequencing reads. We previously introduced a variant calling method, Octopus, that accurately calls germline variants in diploids and somatic mutations in tumors. Here, we evaluate Octopus and other popular tools on whole-genome tetraploid and hexaploid data sets created using in silico mixtures of diploid Genome in a Bottle (GIAB) samples. We find that genotyping errors are abundant for typical sequencing depths but that Octopus makes 25% fewer errors than other methods on average. We supplement our benchmarks with concordance analysis in real autotriploid banana data sets.
Collapse
Affiliation(s)
- Daniel P Cooke
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - David C Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, United Kingdom
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
- Department of Epidemiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
42
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
43
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
44
|
van Lieshout N, van Kaauwen M, Kodde L, Arens P, Smulders MJM, Visser RGF, Finkers R. De novo whole-genome assembly of Chrysanthemum makinoi, a key wild chrysanthemum. G3 (BETHESDA, MD.) 2022; 12:jkab358. [PMID: 34849775 PMCID: PMC8727959 DOI: 10.1093/g3journal/jkab358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Abstract
Chrysanthemum is among the top 10 cut, potted, and perennial garden flowers in the world. Despite this, to date, only the genomes of two wild diploid chrysanthemums have been sequenced and assembled. Here, we present the most complete and contiguous chrysanthemum de novo assembly published so far, as well as a corresponding ab initio annotation. The cultivated hexaploid varieties are thought to originate from a hybrid of wild chrysanthemums, among which the diploid Chrysanthemum makinoi has been mentioned. Using a combination of Oxford Nanopore long reads, Pacific Biosciences long reads, Illumina short reads, Dovetail sequences, and a genetic map, we assembled 3.1 Gb of its sequence into nine pseudochromosomes, with an N50 of 330 Mb and a BUSCO complete score of 92.1%. Our ab initio annotation pipeline predicted 95,074 genes and marked 80.0% of the genome as repetitive. This genome assembly of C. makinoi provides an important step forward in understanding the chrysanthemum genome, evolution, and history.
Collapse
Affiliation(s)
- Natascha van Lieshout
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Linda Kodde
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
45
|
Jansing J, Bortesi L. Knockout of Glycosyltransferases in Nicotiana benthamiana by Genome Editing to Improve Glycosylation of Plant-Produced Proteins. Methods Mol Biol 2022; 2480:241-284. [PMID: 35616867 DOI: 10.1007/978-1-0716-2241-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plants are excellent production hosts for the in vivo synthesis of complex glycosylated proteins such as antibodies. The plant N-glycosylation machinery is largely similar to that found in humans and other mammalian organisms, which is an advantage in comparison to microbial production systems in particular. However, there are some differences in the identity and chemical linkage of the sugars that plants and mammals use to build their N-glycans. These differences can affect important properties of glycosylated proteins produced recombinantly in plants. Here we describe the complete procedure of multiplex targeted gene knockout with CRISPR/Cas9 in Nicotiana benthamiana in order to eliminate the undesirable sugars α-1,3-fucose and β-1,2-xylose from the plant N-glycans. The workflow includes target gene identification, guide RNA design and testing, plant transformation, and the analysis of the regenerated transgenic plants by Sanger sequencing, immunoblot, and mass-spectrometric analysis of recombinant and endogenous proteins.
Collapse
Affiliation(s)
- Julia Jansing
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands.
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands
| |
Collapse
|
46
|
Pucker B, Irisarri I, de Vries J, Xu B. Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. QUANTITATIVE PLANT BIOLOGY 2022; 3:e5. [PMID: 37077982 PMCID: PMC10095996 DOI: 10.1017/qpb.2021.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Third-generation long-read sequencing is transforming plant genomics. Oxford Nanopore Technologies and Pacific Biosciences are offering competing long-read sequencing technologies and enable plant scientists to investigate even large and complex plant genomes. Sequencing projects can be conducted by single research groups and sequences of smaller plant genomes can be completed within days. This also resulted in an increased investigation of genomes from multiple species in large scale to address fundamental questions associated with the origin and evolution of land plants. Increased accessibility of sequencing devices and user-friendly software allows more researchers to get involved in genomics. Current challenges are accurately resolving diploid or polyploid genome sequences and better accounting for the intra-specific diversity by switching from the use of single reference genome sequences to a pangenome graph.
Collapse
Affiliation(s)
- Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
- Author for correspondence: Boas Pucker E-mail:
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Göttingen, Germany
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen, Germany
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Zhang B, Chen S, Liu J, Yan YB, Chen J, Li D, Liu JY. A High-Quality Haplotype-Resolved Genome of Common Bermudagrass ( Cynodon dactylon L.) Provides Insights Into Polyploid Genome Stability and Prostrate Growth. FRONTIERS IN PLANT SCIENCE 2022; 13:890980. [PMID: 35548270 PMCID: PMC9081840 DOI: 10.3389/fpls.2022.890980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 05/03/2023]
Abstract
Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season turfgrass species with great economic value. However, the reference genome is still deficient in C. dactylon, which severely impedes basic studies and breeding studies. In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang was successfully assembled using a combination of multiple sequencing strategies. The assembled genome is approximately 1.01 Gb in size and is comprised of 36 pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding genes and 529,092 repeat sequences were annotated in the assembled genome. Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome duplication events, whereas syntenic and transcriptome analysis revealed that global subgenome dominance was absent among the four haplotypes. Genome-wide gene family analyses further indicated that homologous recombination-regulating genes and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, providing insights into genome-scale regulation of polyploid genome stability and prostrate growth. These results not only facilitate a better understanding of the complex genome composition and unique plant architectural characteristics of common bermudagrass, but also offer a valuable resource for comparative genome analyses of turfgrasses and other plant species.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yong-Bin Yan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jin-Yuan Liu
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jin-Yuan Liu,
| |
Collapse
|
48
|
Ferreira RCU, da Costa Lima Moraes A, Chiari L, Simeão RM, Vigna BBZ, de Souza AP. An Overview of the Genetics and Genomics of the Urochloa Species Most Commonly Used in Pastures. FRONTIERS IN PLANT SCIENCE 2021; 12:770461. [PMID: 34966402 PMCID: PMC8710810 DOI: 10.3389/fpls.2021.770461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.
Collapse
Affiliation(s)
| | - Aline da Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
49
|
Joo KA, Muszynski MG, Kantar MB, Wang ML, He X, Del Valle Echevarria AR. Utilizing CRISPR-Cas in Tropical Crop Improvement: A Decision Process for Fitting Genome Engineering to Your Species. Front Genet 2021; 12:786140. [PMID: 34868276 PMCID: PMC8633396 DOI: 10.3389/fgene.2021.786140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Adopting modern gene-editing technologies for trait improvement in agriculture requires important workflow developments, yet these developments are not often discussed. Using tropical crop systems as a case study, we describe a workflow broken down into discrete processes with specific steps and decision points that allow for the practical application of the CRISPR-Cas gene editing platform in a crop of interest. While we present the steps of developing genome-edited plants as sequential, in practice parts can be done in parallel, which are discussed in this perspective. The main processes include 1) understanding the genetic basis of the trait along with having the crop’s genome sequence, 2) testing and optimization of the editing reagents, development of efficient 3) tissue culture and 4) transformation methods, and 5) screening methods to identify edited events with commercial potential. Our goal in this perspective is to help any lab that wishes to implement this powerful, easy-to-use tool in their pipeline, thus aiming to democratize the technology.
Collapse
Affiliation(s)
- Kathleen A Joo
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael G Muszynski
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Xiaoling He
- Hawaii Agriculture Research Center, Waipahu, HI, United States
| | - Angel R Del Valle Echevarria
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.,Hawaii Agriculture Research Center, Waipahu, HI, United States
| |
Collapse
|
50
|
Zhou M, Laureanti JA, Bell CJ, Kwon M, Meng Q, Novikova IV, Thomas DG, Nicora CD, Sontag RL, Bedgar DL, O'Bryon I, Merkley ED, Ginovska B, Cort JR, Davin LB, Lewis NG. De novo sequencing and native mass spectrometry revealed hetero-association of dirigent protein homologs and potential interacting proteins in Forsythia × intermedia. Analyst 2021; 146:7670-7681. [PMID: 34806721 DOI: 10.1039/d1an01476e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Joseph A Laureanti
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Callum J Bell
- National Center for Genome Resources, Santa Fe, NM, USA
| | - Mi Kwon
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Qingyan Meng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Dennis G Thomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan L Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Diana L Bedgar
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Isabelle O'Bryon
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric D Merkley
- Chemical and Biological Signatures Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bojana Ginovska
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John R Cort
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| |
Collapse
|