1
|
Khan A, Švara A, Wang N. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:263-287. [PMID: 38768395 DOI: 10.1146/annurev-phyto-021622-120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include trans- and cis-genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
2
|
Calvez L, Dereeper A, Perdereau A, Mournet P, Miranda M, Bruyère S, Hufnagel B, Froelicher Y, Lemainque A, Morillon R, Ollitrault P. Meiotic Behaviors of Allotetraploid Citrus Drive the Interspecific Recombination Landscape, the Genetic Structures, and Traits Inheritance in Tetrazyg Progenies Aiming to Select New Rootstocks. PLANTS (BASEL, SWITZERLAND) 2023; 12:1630. [PMID: 37111854 PMCID: PMC10146282 DOI: 10.3390/plants12081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.
Collapse
Affiliation(s)
- Lény Calvez
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Alexis Dereeper
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Aude Perdereau
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Pierre Mournet
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Maëva Miranda
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Saturnin Bruyère
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Barbara Hufnagel
- UMR AGAP, CIRAD, F-97170 Petit-Bourg, France; (L.C.); (A.D.); (S.B.); (B.H.)
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
| | - Yann Froelicher
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-20230 San Giuliano, France
| | - Arnaud Lemainque
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, F-91000 Evry, France; (A.P.)
| | - Raphaël Morillon
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| | - Patrick Ollitrault
- UMR AGAP, Institut Agro, CIRAD, INRAE, University of Montpellier, F-34060 Montpellier, France; (P.M.); (M.M.); (Y.F.); (R.M.)
- UMR AGAP, CIRAD, F-34398 Montpellier, France
| |
Collapse
|
3
|
Montalt R, Cuenca J, Vives MC, Mournet P, Navarro L, Ollitrault P, Aleza P. Genotyping by Sequencing for SNP-Based Linkage Analysis and the Development of KASPar Markers for Male Sterility and Polyembryony in Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1567. [PMID: 37050193 PMCID: PMC10096700 DOI: 10.3390/plants12071567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Polyembryony and male sterility (MS) are essential characters for citrus breeding. MS, coupled with parthenocarpy, allows for addressing the diversification of diploid seedless mandarin varieties, and nucleocytoplasmic MS is the most prevalent system. Polyembryony limits the use of seed parents in scion breeding programs, and the recovery of monoembryonic hybrids to be used as female parents is a crucial pre-breeding component. The objectives of this work were the identification of SNPs closely linked with the genes implied in these traits for marker-assisted selection. Genotyping by sequencing was used to genotype 61 diploid hybrids from an F1 progeny recovered from crossing 'Kiyomi' and 'Murcott' tangors. A total of 6444 segregating markers were identified and used to establish the two parental genetic maps. They consisted of 1374 and 697 markers encompassing 1416.287 and 1339.735 cM for 'Kiyomi' and 'Murcott', respectively. Phenotyping for MS and polyembryony was performed. The genotype-trait association study identified a genomic region on LG8 which was significantly associated with MS, and a genomic region on LG1 which was significantly associated with polyembryony. Annotation of the identified region for MS revealed 19 candidate genes. One SNP KASPar marker was developed and fully validated for each trait.
Collapse
Affiliation(s)
- Rafael Montalt
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - José Cuenca
- Agrupación de Viveristas de Agrios (AVASA), 12570 Castellón, Spain
| | - María Carmen Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Pierre Mournet
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| | - Patrick Ollitrault
- UMR AGAP, CIRAD, 34398 Montpellier, France
- UMR AGAP, Institut Agro, CIRAD, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Valencia, Spain
| |
Collapse
|
4
|
MicroRNA miR171b Positively Regulates Resistance to Huanglongbing of Citrus. Int J Mol Sci 2023; 24:ijms24065737. [PMID: 36982808 PMCID: PMC10053592 DOI: 10.3390/ijms24065737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Huanglongbing (HLB) is one of the most severe citrus diseases in the world, causing huge economic losses. However, efficient methods of protecting citrus from HLB have not yet been developed. microRNA (miRNA)-mediated regulation of gene expression is a useful tool to control plant diseases, but the miRNAs involved in regulating resistance to HLB have not yet been identified. In this study, we found that miR171b positively regulated resistance to HLB in citrus. Upon infection with HLB bacteria, the bacteria were detected in the second month in the control plants. However, in the miR171b-overexpressing transgenic citrus plants, the bacteria could not be detected until the 24th month. RNA-seq data indicated that multiple pathways, such as photosynthesis, plant–pathogen interaction, the MAPK signaling pathway, etc., might be involved in improving the resistance to HLB in miR171b-overexpressing plants compared with the control. Finally, we determined that miR171b could target SCARECROW-like (SCL) genes to downregulate their expression, which then led to promoted resistance to HLB stress. Collectively, our results demonstrate that miR171b plays a positive regulatory role in resistance to citrus HLB, and provides a new insight into the role of miRNAs in the adaptation of citrus to HLB stress.
Collapse
|
5
|
Zhuo X, Yu Q, Russo R, Zhang Y, Wei X, Wang YZ, Holden PM, Gmitter FG. Role of long non-coding RNA in regulatory network response to Candidatus Liberibacter asiaticus in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1090711. [PMID: 36890903 PMCID: PMC9986497 DOI: 10.3389/fpls.2023.1090711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Long non-coding RNAs (lncRNAs) serve as crucial regulators in plant response to various diseases, while none have been systematically identified and characterized in response to citrus Huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) bacteria. Here, we comprehensively investigated the transcriptional and regulatory dynamics of the lncRNAs in response to CLas. Samples were collected from leaf midribs of CLas- and mock-inoculated HLB-tolerant rough lemon (Citrus jambhiri) and HLB-sensitive sweet orange (C. sinensis) at week 0, 7, 17, and 34 following inoculation using CLas+ budwood of three biological replicates in the greenhouse. A total of 8,742 lncRNAs, including 2,529 novel lncRNAs, were identified from RNA-seq data with rRNA-removed from strand-specific libraries. Genomic variation analyses of conserved lncRNAs from 38 citrus accessions showed that 26 single nucleotide polymorphisms (SNPs) were significantly correlated with HLB. In addition, lncRNA-mRNA weighted gene co-expression network analysis (WGCNA) showed a significant module correlated with CLas-inoculation in rough lemon. Notably, the most significant LNC_28805 and multiple co-expressed genes related to plant defense in the module were targeted by miRNA5021, suggesting that LNC28805 might compete with endogenous miR5021 to maintain the homeostasis of immune gene expression levels. Candidate WRKY33 and SYP121 genes targeted by miRNA5021 were identified as two key hub genes interacting with bacteria pathogen response genes based on the prediction of protein-protein interaction (PPI) network. These two genes were also found within HLB-associated QTL in linkage group 6. Overall, our findings provide a reference for a better understanding of the role of lncRNAs involved in citrus HLB regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fred G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
6
|
Kumar K, Yu Q, Bhatia D, Honsho C, Gmitter FG. Construction of a high density genetic linkage map to define the locus conferring seedlessness from Mukaku Kishu mandarin. FRONTIERS IN PLANT SCIENCE 2023; 14:1087023. [PMID: 36875618 PMCID: PMC9976630 DOI: 10.3389/fpls.2023.1087023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mukaku Kishu ('MK'), a small sized mandarin, is an important source of seedlessness in citrus breeding. Identification and mapping the gene(s) governing 'MK' seedlessness will expedite seedless cultivar development. In this study, two 'MK'-derived mapping populations- LB8-9 Sugar Belle® ('SB') × 'MK' (N=97) and Daisy ('D') × 'MK' (N=68) were genotyped using an Axiom_Citrus56 Array encompassing 58,433 SNP probe sets, and population specific male and female parent linkage maps were constructed. The parental maps of each population were integrated to produce sub-composite maps, which were further merged to develop a consensus linkage map. All the parental maps (except 'MK_D') had nine major linkage groups, and contained 930 ('SB'), 810 ('MK_SB'), 776 ('D') and 707 ('MK_D') SNPs. The linkage maps displayed 96.9 ('MK_D') to 98.5% ('SB') chromosomal synteny with the reference Clementine genome. The consensus map was comprised of 2588 markers including a phenotypic seedless (Fs)-locus and spanned a genetic distance of 1406.84 cM, with an average marker distance of 0.54 cM, which is substantially lower than the reference Clementine map. For the phenotypic Fs-locus, the distribution of seedy and seedless progenies in both 'SB' × 'MK' (55:42, χ2 = 1.74) and 'D' × 'MK' populations (33:35, χ2 = 0.06) followed a test cross pattern. The Fs-locus mapped on chromosome 5 with SNP marker 'AX-160417325' at 7.4 cM in 'MK_SB' map and between two SNP markers 'AX-160536283' and 'AX-160906995' at a distance of 2.4 and 4.9 cM, respectively in 'MK_D' map. The SNPs 'AX-160417325' and 'AX-160536283' correctly predicted seedlessness of 25-91.9% progenies in this study. Based on the alignment of flanking SNP markers to the Clementine reference genome, the candidate gene for seedlessness hovered in a ~ 6.0 Mb region between 3.97 Mb (AX-160906995) to 10.00 Mb (AX-160536283). This region has 131 genes of which 13 genes (belonging to seven gene families) reportedly express in seed coat or developing embryo. The findings of the study will prove helpful in directing future research for fine mapping this region and eventually underpinning the exact causative gene governing seedlessness in 'MK'.
Collapse
Affiliation(s)
- Krishan Kumar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Punjab Agricultural University, Dr. JC Bakhshi Regional Research Station, Abohar, India
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chitose Honsho
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Laboratory of Pomology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
7
|
Volk GM, Gmitter FG, Krueger RR. Conserving Citrus Diversity: From Vavilov's Early Explorations to Genebanks around the World. PLANTS (BASEL, SWITZERLAND) 2023; 12:814. [PMID: 36840162 PMCID: PMC9964561 DOI: 10.3390/plants12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Citrus is among the most economically important fruit crops. Its vast species diversity and global production was observed by N.I. Vavilov during his international plant explorations from the early to mid-1900s. Currently, ex situ citrus collections located around the world conserve and protect citrus genetic resources, as revealed in a survey conducted in 2021. Responses were received from 43 collections in 27 countries, of which 35 provided data regarding collection composition, management practices, and security, as well as other information. The six largest citrus collections have between 1000 and 1735 accessions. The largest accession holdings are mandarins and sweet oranges, although all citrus fruit types are maintained: mandarin, sweet orange, lemon, pummelo, grapefruit, hybrids, lime, sour orange, citron, kumquat, papeda, finger lime, and crop wild relatives. Diseases pose significant threats to collections, though some collections are maintained in a clean-plant state as a result of intensive sanitation efforts. National and regional quarantine regulations often limit the export and import of citrus plants or propagative materials, thus limiting the availability of materials at an international level. Resources, both financial and human, are necessary to ensure the long-term safety and security of citrus collections on a global scale. Future efforts to develop citrus genebanking communities will provide opportunities for improved conservation, as well as collaborations and training.
Collapse
Affiliation(s)
- Gayle M. Volk
- USDA-ARS National Laboratory for Genetic Resources Preservation, 1111 S. Mason St., Fort Collins, CO 80521, USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center (CREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL 33850, USA
| | - Robert R. Krueger
- USDA-ARS National Germplasm Repository for Citrus and Dates, 1060 Martin Luther King Blvd., Riverside, CA 92507, USA
| |
Collapse
|
8
|
Bowman KD, McCollum G, Seymour DK. Genetic modulation of Valencia sweet orange field performance by 50 rootstocks under huanglongbing-endemic conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1061663. [PMID: 36844073 PMCID: PMC9945190 DOI: 10.3389/fpls.2023.1061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Although the citrus scion cultivar primarily determines the characteristics of the fruit, the rootstock cultivar of the graft combination has a major role in determining the horticultural performance of the tree. The disease huanglongbing (HLB) is particularly devastating to citrus, and the rootstock has been demonstrated to modulate tree tolerance. However, no existing rootstock is entirely suitable in the HLB-endemic environment, and citrus rootstocks are particularly challenging to breed because of a long life cycle and several biological characteristics that interfere with breeding and commercial use. This study with Valencia sweet orange scion documents the multi-season performance of 50 new hybrid rootstocks and commercial standards in one trial that forms the first wave of a new breeding strategy, with the aim of identifying superior rootstocks for commercial use now, and mapping important traits to be used in selection for the next generation of outstanding rootstocks. A large assortment of traits were quantified for all trees in the study, including traits associated with tree size, health, cropping, and fruit quality. Among the quantitative traits compared between rootstock clones, all except one were observed to have significant rootstock influence. Multiple progeny from eight different parental combinations were included in the trial study, and significant differences between parental combinations of the rootstocks were observed for 27 of the 32 traits compared. Pedigree information was integrated with quantitative trait measurements to dissect the genetic components of rootstock-mediated tree performance. Results suggest there is a significant genetic component underlying rootstock-mediated tolerance to HLB and other critical traits, and that integration of pedigree-based genetic information with quantitative phenotypic data from trials should enable marker-based breeding approaches for the rapid selection of next-generation rootstocks with superior combinations of traits that are needed for commercial success. The current generation of new rootstocks included in this trial is a step toward this goal. Based on results from this trial, the new hybrids US-1649, US-1688, US-1709, and US-2338 were considered the four most promising new rootstocks. Release of these rootstocks for commercial use is being considered, pending the evaluation of continuing performance in this trial and the results from other trials.
Collapse
Affiliation(s)
- Kim D. Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Ft. Pierce, FL, United States
| | - Danelle K. Seymour
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
9
|
Yu Q, Dai F, Russo R, Guha A, Pierre M, Zhuo X, Wang YZ, Vincent C, Gmitter FG. Phenotypic and Genetic Variation in Morphophysiological Traits in Huanglongbing-Affected Mandarin Hybrid Populations. PLANTS (BASEL, SWITZERLAND) 2022; 12:42. [PMID: 36616171 PMCID: PMC9824356 DOI: 10.3390/plants12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most costly disease for the global citrus industry. Currently, no effective tools have been found to control HLB. Most commercial citrus varieties are susceptible to HLB, though some citrus hybrid cultivars have reduced sensitivity to the disease. Citrus breeding populations contain a large diversity of germplasm, with thousands of unique genotypes exhibiting a broad range of phenotypes. Understanding phenotypic variation and genetic inheritance in HLB-affected mandarin hybrid populations are crucial for breeding tolerant citrus varieties. In this study, we assessed 448 diverse mandarin hybrids coming from 30 crosses, and 45 additional accessions. For HLB tolerance, we measured HLB severity visual score and CLas titers by qPCR. We also measured seven morphophysiological traits indirectly related to HLB tolerance with leaf area index (LAI), leaf area (LA), leaf mass per area (LMA), photosystem II parameters (Fv/Fo, Fv/Fm), and photochemical performance index (PIabs). By estimating the genetic variation in five half-sib families, we estimated the heritability of phenotypic traits and found a significant genetic effect on HLB visual score and photosynthesis parameters, which indicates opportunities for the genetic improvement of HLB tolerance. In addition, although it is easy to identify infected trees based on HLB symptomatic leaves, visually phenotyping whole trees can be difficult and inconsistent due to the interpersonal subjectivity of characterization. We investigated their relationships and found that LAI was highly correlated with HLB score, with correlation coefficients of r = 0.70 and r = 0.77 for the whole population and five half-sib families, respectively. Photochemical parameters showed significant correlation with HLB severity and responded differentially with the side of the canopy. Our study suggests that LAI and photochemical parameters could be used as a rapid and cost-effective method to evaluate HLB tolerance and inheritance in citrus breeding programs.
Collapse
Affiliation(s)
- Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Fanwei Dai
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Riccardo Russo
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Anirban Guha
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Myrtho Pierre
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Xiaokang Zhuo
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Yuanzhi Zimmy Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Christopher Vincent
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| |
Collapse
|
10
|
Wu B, Yu Q, Deng Z, Duan Y, Luo F, Gmitter Jr F. A chromosome-level phased genome enabling allele-level studies in sweet orange: a case study on citrus Huanglongbing tolerance. HORTICULTURE RESEARCH 2022; 10:uhac247. [PMID: 36643761 PMCID: PMC9832951 DOI: 10.1093/hr/uhac247] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 05/30/2023]
Abstract
Sweet orange originated from the introgressive hybridizations of pummelo and mandarin resulting in a highly heterozygous genome. How alleles from the two species cooperate in shaping sweet orange phenotypes under distinct circumstances is unknown. Here, we assembled a chromosome-level phased diploid Valencia sweet orange (DVS) genome with over 99.999% base accuracy and 99.2% gene annotation BUSCO completeness. DVS enables allele-level studies for sweet orange and other hybrids between pummelo and mandarin. We first configured an allele-aware transcriptomic profiling pipeline and applied it to 740 sweet orange transcriptomes. On average, 32.5% of genes have a significantly biased allelic expression in the transcriptomes. Different cultivars, transgenic lineages, tissues, development stages, and disease status all impacted allelic expressions and resulted in diversified allelic expression patterns in sweet orange, but particularly citrus Huanglongbing (HLB) shifted the allelic expression of hundreds of genes in leaves and calyx abscission zones. In addition, we detected allelic structural mutations in an HLB-tolerant mutant (T19) and a more sensitive mutant (T78) through long-read sequencing. The irradiation-induced structural mutations mostly involved double-strand breaks, while most spontaneous structural mutations were transposon insertions. In the mutants, most genes with significant allelic expression ratio alterations (≥1.5-fold) were directly affected by those structural mutations. In T19, alleles located at a translocated segment terminal were upregulated, including CsDnaJ, CsHSP17.4B, and CsCEBPZ. Their upregulation is inferred to keep phloem protein homeostasis under the stress from HLB and enable subsequent stress responses observed in T19. DVS will advance allelic level studies in citrus.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Qibin Yu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Yongping Duan
- USDA-ARS, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945, USA
| | - Feng Luo
- School of Computing, Clemson University, 100 McAdams Hall, Clemson, SC 29643, USA
| | - Frederick Gmitter Jr
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
11
|
Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 2021; 17:e1010071. [PMID: 34882744 PMCID: PMC8659345 DOI: 10.1371/journal.ppat.1010071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Citrus Huanglongbing (HLB), also known as citrus greening, is one of the most devastating citrus diseases worldwide. Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain associated with HLB, which is yet to be cultured in vitro. None of the commercial citrus cultivars are resistant to HLB. The pathosystem of Ca. Liberibacter is complex and remains a mystery. In this review, we focus on the recent progress in genomic research on the pathogen, the interaction of host and CLas, and the influence of CLas infection on the transcripts, proteins, and metabolism of the host. We have also focused on the identification of candidate genes for CLas pathogenicity or the improvements of HLB tolerance in citrus. In the end, we propose potentially promising areas for mechanistic studies of CLas pathogenicity, defense regulators, and genetic improvement for HLB tolerance/resistance in the future.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Catalano C, Di Guardo M, Distefano G, Caruso M, Nicolosi E, Deng Z, Gentile A, La Malfa SG. Biotechnological Approaches for Genetic Improvement of Lemon ( Citrus limon (L.) Burm. f.) against Mal Secco Disease. PLANTS 2021; 10:plants10051002. [PMID: 34067841 PMCID: PMC8157051 DOI: 10.3390/plants10051002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Among Citrus species, lemon is one of the most susceptible to mal secco disease, a tracheomycosis caused by the mitosporic fungus Plenodomus tracheiphilus, which induces chlorosis followed by leaf drop and progressive desiccation of twigs and branches. Severe infection can cause the death of the plant. Since no effective control strategies are available to efficiently control the pathogen spread, host tolerance is the most desirable goal in the struggle against mal secco disease. To date, both traditional breeding programs and biotechnological techniques were not efficient in developing novel varieties coupling tolerance to mal secco with optimal fruit quality. Furthermore, the genetic basis of host resistance has not been fully deciphered yet, hampering the set-up of marker-assisted selection (MAS) schemes. This paper provides an overview of the biotechnological approaches adopted so far for the selection of mal secco tolerant lemon varieties and emphasizes the promising contribution of marker-trait association analysis techniques for both unraveling the genetic determinism of the resistance to mal secco and detecting molecular markers that can be readily used for MAS. Such an approach has already proved its efficiency in several crops and could represent a valuable tool to select novel lemon varieties coupling superior fruit quality traits and resistance to mal secco.
Collapse
Affiliation(s)
- Chiara Catalano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
| | - Gaetano Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
| | - Marco Caruso
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Corso Savoia 190, 95024 Acireale, Italy;
| | - Elisabetta Nicolosi
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
| | - Ziniu Deng
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China;
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China;
- Correspondence:
| | - Stefano Giovanni La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, via Valdisavoia 5, 95123 Catania, Italy; (C.C.); (M.D.G.); (G.D.); (E.N.); (S.G.L.M.)
| |
Collapse
|
13
|
Mou J, Zhang Z, Qiu H, Lu Y, Zhu X, Fan Z, Zhang Q, Ye J, Fernie AR, Cheng Y, Deng X, Wen W. Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. HORTICULTURE RESEARCH 2021; 8:56. [PMID: 33642588 PMCID: PMC7917093 DOI: 10.1038/s41438-021-00472-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 05/20/2023]
Abstract
Deciphering the genetic basis of plant secondary metabolism will provide useful insights for genetic improvement and enhance our fundamental understanding of plant biological processes. Although citrus plants are among the most important fruit crops worldwide, the genetic basis of secondary metabolism in these plants is largely unknown. Here, we use a high-density linkage map to dissect large-scale flavonoid metabolic traits measured in different tissues (young leaf, old leaf, mature pericarp, and mature pulp) of an F1 pseudo-testcross citrus population. We detected 80 flavonoids in this population and identified 138 quantitative trait loci (QTLs) for 57 flavonoids in these four tissues. Based on transcriptional profiling and functional annotation, twenty-one candidate genes were identified, and one gene encoding flavanone 3-hydroxylase (F3H) was functionally verified to result in naturally occurring variation in dihydrokaempferol content through genetic variations in its promoter and coding regions. The abundant data resources collected for diverse citrus germplasms here lay the foundation for complete characterization of the citrus flavonoid biosynthetic pathway and will thereby promote efficient utilization of metabolites in citrus quality improvement.
Collapse
Affiliation(s)
- Jiaolin Mou
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhehui Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiji Qiu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Zhu
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Ziquan Fan
- Thermo Fisher Scientific, Shanghai, 201206, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Müehlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Peng Z, Bredeson JV, Wu GA, Shu S, Rawat N, Du D, Parajuli S, Yu Q, You Q, Rokhsar DS, Gmitter FG, Deng Z. A chromosome-scale reference genome of trifoliate orange (Poncirus trifoliata) provides insights into disease resistance, cold tolerance and genome evolution in Citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1215-1232. [PMID: 32985030 PMCID: PMC7756384 DOI: 10.1111/tpj.14993] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.
Collapse
Affiliation(s)
- Ze Peng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Jessen V. Bredeson
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
| | - Guohong A. Wu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Nidhi Rawat
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Dongliang Du
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Saroj Parajuli
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Qibin Yu
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Qian You
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| | - Daniel S. Rokhsar
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyCA94720USA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Lab1 Cyclotron RoadBerkeleyCA94720USA
| | - Frederick G. Gmitter
- Citrus Research and Education CenterUniversity of Florida, IFAS700 Experiment Station RdLake AlfredFL33850USA
| | - Zhanao Deng
- Department of Environmental HorticultureGulf Coast Research and Education CenterUniversity of FloridaIFAS14625 County Road 672WimaumaFL33598USA
| |
Collapse
|
15
|
Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW. Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. PLANT CELL REPORTS 2020; 39:1609-1622. [PMID: 32897396 DOI: 10.1007/s00299-020-02587-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
The physical locations of citrus centromere are revealed by combining genetic and immunological assays for the first time and nine citrus centromere-specific markers for cytogenetics are mined. Centromere localization is challenging, because highly redundant repetitive sequences in centromeric regions make sequence assembly difficult. Although several citrus genomes have been released, the centromeric regions and their characteristics remain to be elucidated. Here, we mapped citrus centromeres through half-tetrad analysis (HTA) that included the genotyping of 54 tetraploid hybrids derived from 2n megagametophytes of Nadorcott tangor with 212 single nucleotide polymorphism (SNP) markers. The sizes of centromeric regions, which estimated based on the heterozygosity restitution rate pattern along the chromosomes, ranged from 1.12 to 18.19 Mb. We also profiled the binding sequences with the centromere-specific histone variant CenH3 by chromatin immunoprecipitation sequencing (ChIP-seq). Based on the positions of the top ten CenH3-enriched contigs, the sizes of centromeric regions were estimated to range from 0.01 to 7.60 Mb and were either adjacent to or included in the centromeric regions identified by HTA. We used DNA probes from two repeats selected from the centromeric regions and seven CenH3-binding centromeric repeats to verify centromeric locations by fluorescence in situ hybridization (FISH). Centromere localization in citrus will contribute to the mining of centromeric/pericentromeric markers, thus to facilitate the rapid identification of mechanisms underlying 2n gamete formation and serve the polyploidy breeding.
Collapse
Affiliation(s)
- Qiang-Ming Xia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Ke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Li Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Eduardo I, Alegre S, Alexiou KG, Arús P. Resynthesis: Marker-Based Partial Reconstruction of Elite Genotypes in Clonally-Reproducing Plant Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1205. [PMID: 32849747 PMCID: PMC7427350 DOI: 10.3389/fpls.2020.01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 06/02/2023]
Abstract
We propose a method for marker-based selection of cultivars of clonally-reproducing plant species which keeps the basic genetic architecture of a top-performing cultivar (usually a partly heterozygous genotype), with the addition of some agronomically relevant differences (such as production time, product appearance or quality), providing added value to the product or cultivation process. The method is based on selecting a) two complementary nearly-inbred lines from successive selfing generations (ideally only F2 and F3) of large size, that may generate individuals with most of their genome identical to the original cultivar but being homozygous for either of the two component haplotypes in the rest, and b) individuals with such characteristics already occurring in the F2. Option a) allows for introgressing genes from other individuals in one or both of these nearly-inbred lines. Peach, a woody-perennial, clonally-reproduced species, was chosen as a model for a proof of concept of the Resynthesis process due to its biological characteristics: self-compatibility, compact and genetically well-known genome, low recombination rates and relatively short intergeneration time (3-4 years). From 416 F2 seedlings from cultivar Sweet Dream (SD), we obtained seven individuals with 76-94% identity with SD, and selected five pairs of complementary lines with average homozygosity of the two parents ≥0.70 such that crossing would produce some individuals highly similar to SD. The application of this scheme to other species with more complex genomes or biological features, including its generalization to F1 hybrids, is discussed.
Collapse
Affiliation(s)
- Iban Eduardo
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Simó Alegre
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| | - Konstantinos G. Alexiou
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Pere Arús
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
17
|
Heterologous Expression of the Constitutive Disease Resistance 2 and 8 Genes from Poncirus trifoliata Restored the Hypersensitive Response and Resistance of Arabidopsis cdr1 Mutant to Bacterial Pathogen Pseudomonas syringae. PLANTS 2020; 9:plants9070821. [PMID: 32629813 PMCID: PMC7412121 DOI: 10.3390/plants9070821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. In the United States, this disease is associated with a phloem-restricted bacterium, Candidatus Liberibacter asiaticus. Commercial citrus cultivars are susceptible to HLB, but Poncirus trifoliata, a close relative of Citrus, is highly tolerant of HLB. Isolating P. trifoliata gene(s) controlling its HLB tolerance followed by expressing the gene(s) in citrus is considered a potential cisgenic approach to engineering citrus for tolerance to HLB. Previous gene expression studies indicated that the constitutive disease resistance (CDR) genes in P. trifoliata (PtCDRs) may play a vital role in its HLB tolerance. This study was designed to use Arabidopsis mutants as a model system to confirm the function of PtCDRs in plant disease resistance. PtCDR2 and PtCDR8 were amplified from P. trifoliata cDNA and transferred into the Arabidopsis cdr1 mutant, whose resident CDR1 gene was disrupted by T-DNA insertion. The PtCDR2 and PtCDR8 transgenic Arabidopsis cdr1 mutant restored its hypersensitive response to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) expressing avrRpt2. The defense marker gene PATHOGENESIS RELATED 1 (PR1) expressed at much higher levels in the PtCDR2 or PtCDR8 transgenic cdr1 mutant than in the non-transgenic cdr1 mutant with or without pathogen infection. Multiplication of Pst DC3000 bacteria in Arabidopsis was inhibited by the expression of PtCDR2 and PtCDR8. Our results showed that PtCDR2 and PtCDR8 were functional in Arabidopsis and played a positive role in disease resistance and demonstrated that Arabidopsis mutants can be a useful alternate system for screening Poncirus genes before making the time-consuming effort to transfer them into citrus, a perennial woody plant that is highly recalcitrant for Agrobacterium or biolistic-mediated transformation.
Collapse
|
18
|
Curtolo M, Granato LM, Soratto TAT, Curtolo M, Gazaffi R, Takita MA, Cristofani-Yaly M, Machado MA. Expression Quantitative Trait Loci (eQTL) mapping for callose synthases in intergeneric hybrids of Citrus challenged with the bacteria Candidatus Liberibacter asiaticus. Genet Mol Biol 2020; 43:e20190133. [PMID: 32568357 PMCID: PMC7295156 DOI: 10.1590/1678-4685-gmb-2019-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Citrus plants have been extremely affected by Huanglongbing (HLB) worldwide, causing
economic losses. HLB disease causes disorders in citrus plants, leading to callose
deposition in the phloem vessel sieve plates. Callose is synthesized by callose
synthases, which are encoded by 12 genes (calS1–
calS12)in Arabidopsis thaliana. We evaluated the
expression of eight callose synthase genes from Citrus in hybrids between
Citrus sunki and Poncirus trifoliata infected
with HLB. The objective of this work was to identify possible tolerance loci
combining the expression quantitative trait loci (eQTL) of different callose
synthases and genetic Single-Nucleotide Polymorphism (SNP) maps of C.
sunki and P. trifoliata. The expression data from all
CscalS ranged widely among the hybrids. Furthermore, the data
allowed the detection of 18 eQTL in the C. sunki map and 34 eQTL in
the P. trifoliata map. In both maps, some eQTL for different
CscalS were overlapped; thus, a single region could be associated
with the regulation of more than one CscalS. The regions identified
in this work can be interesting targets for future studies of Citrus
breeding programs to manipulate callose synthesis during HLB infection.
Collapse
Affiliation(s)
- Maiara Curtolo
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil.,Universidade Estadual de Campinas, Programa de Pós-Graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | - Laís Moreira Granato
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| | | | - Maisa Curtolo
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós-Graduação em Genética e Melhoramento de Plantas, Piracicaba, SP, Brazil
| | - Rodrigo Gazaffi
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e Produção Vegetal e Animal, Araras, SP, Brazil
| | - Marco Aurélio Takita
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| | | | - Marcos Antonio Machado
- Instituto Agronômico de Campinas, Centro APTA Citros Sylvio Moreira, Cordeirópolis, SP, Brazil
| |
Collapse
|
19
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|