1
|
Mamedov T, Zakiyeva G, Demirel F, Mammadova G, Hasanova G. Isolation, cloning, and gene expression analysis of phosphoglycolate phosphatase from green alga Chlamydomonas reinhardtii. PHOTOSYNTHETICA 2024; 62:90-101. [PMID: 39650631 PMCID: PMC11609767 DOI: 10.32615/ps.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 12/11/2024]
Abstract
Phosphoglycolate phosphatase (PGPase), a key enzyme in photosynthetic organisms, catalyzes the dephosphorylation of phosphoglycolate, which is largely produced by the oxygenase activity of Rubisco, and is a potent inhibitor of several Calvin cycle enzymes. PGPase (CrPGPase 1) was previously cloned, purified, and characterized from unicellular green Chlamydomonas reinhardtii. In silico analysis revealed two more candidates encoding PGPase enzymes in the C. reinhardtii genome. In this study, we isolated, cloned, and overexpressed three PGPase genes (pgp1, pgp2, pgp3) from C. reinhardtii and performed gene expression analysis at high and low ammonium [NH4 +] concentrations. We demonstrate that all three pgp genes encode functionally active PGPases in C. reinhardtii. In addition, we show that pgp1 and pgp2 genes are N-responsive genes and are upregulated under low ammonium concentrations. In silico analysis revealed that PGPase exists mainly in three isoforms in higher plants and algae.
Collapse
Affiliation(s)
- T. Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, Republic of Azerbaijan, AZ 1073 Baku, Azerbaijan
| | - G. Zakiyeva
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, Republic of Azerbaijan, AZ 1073 Baku, Azerbaijan
| | - F. Demirel
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
| | - G. Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
| | - G. Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
| |
Collapse
|
2
|
Mills LA, Moreno-Cabezuelo JÁ, Włodarczyk A, Victoria AJ, Mejías R, Nenninger A, Moxon S, Bombelli P, Selão TT, McCormick AJ, Lea-Smith DJ. Development of a Biotechnology Platform for the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. Biomolecules 2022; 12:biom12070872. [PMID: 35883428 PMCID: PMC9313322 DOI: 10.3390/biom12070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
Synechococcus sp. PCC 11901 reportedly demonstrates the highest, most sustained growth of any known cyanobacterium under optimized conditions. Due to its recent discovery, our knowledge of its biology, including the factors underlying sustained, fast growth, is limited. Furthermore, tools specific for genetic manipulation of PCC 11901 are not established. Here, we demonstrate that PCC 11901 shows faster growth than other model cyanobacteria, including the fast-growing species Synechococcuselongatus UTEX 2973, under optimal growth conditions for UTEX 2973. Comparative genomics between PCC 11901 and Synechocystis sp. PCC 6803 reveal conservation of most metabolic pathways but PCC 11901 has a simplified electron transport chain and reduced light harvesting complex. This may underlie its superior light use, reduced photoinhibition, and higher photosynthetic and respiratory rates. To aid biotechnology applications, we developed a vitamin B12 auxotrophic mutant but were unable to generate unmarked knockouts using two negative selectable markers, suggesting that recombinase- or CRISPR-based approaches may be required for repeated genetic manipulation. Overall, this study establishes PCC 11901 as one of the most promising species currently available for cyanobacterial biotechnology and provides a useful set of bioinformatics tools and strains for advancing this field, in addition to insights into the factors underlying its fast growth phenotype.
Collapse
Affiliation(s)
- Lauren A. Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - José Ángel Moreno-Cabezuelo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Artur Włodarczyk
- Bondi Bio Pty Ltd., c/o Climate Change Cluster, University of Technology Sydney, 745 Harris Street, Ultimo, NSW 2007, Australia;
| | - Angelo J. Victoria
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - Rebeca Mejías
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Anja Nenninger
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
| | - Tiago T. Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; (A.J.V.); (A.N.); (A.J.M.)
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (L.A.M.); (J.Á.M.-C.); (R.M.); (S.M.)
- Correspondence:
| |
Collapse
|
3
|
Yang F, Zhang J, Cai Z, Zhou J, Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO 2. AMB Express 2021; 11:65. [PMID: 33963929 PMCID: PMC8106553 DOI: 10.1186/s13568-021-01224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.
Collapse
|
4
|
Scheurer NM, Rajarathinam Y, Timm S, Köbler C, Kopka J, Hagemann M, Wilde A. Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2021; 12:675227. [PMID: 34239525 PMCID: PMC8258377 DOI: 10.3389/fpls.2021.675227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 05/06/2023]
Abstract
The putative circadian clock system of the facultative heterotrophic cyanobacterial strain Synechocystis sp. PCC 6803 comprises the following three Kai-based systems: a KaiABC-based potential oscillator that is linked to the SasA-RpaA two-component output pathway and two additional KaiBC systems without a cognate KaiA component. Mutants lacking the genes encoding the KaiAB1C1 components or the response regulator RpaA show reduced growth in light/dark cycles and do not show heterotrophic growth in the dark. In the present study, the effect of these mutations on central metabolism was analyzed by targeted and non-targeted metabolite profiling. The strongest metabolic changes were observed in the dark in ΔrpaA and, to a lesser extent, in the ΔkaiAB1C1 mutant. These observations included the overaccumulation of 2-phosphoglycolate, which correlated with the overaccumulation of the RbcL subunit in the mutants, and taken together, these data suggest enhanced RubisCO activity in the dark. The imbalanced carbon metabolism in the ΔrpaA mutant extended to the pyruvate family of amino acids, which showed increased accumulation in the dark. Hence, the deletion of the response regulator rpaA had a more pronounced effect on metabolism than the deletion of the kai genes. The larger impact of the rpaA mutation is in agreement with previous transcriptomic analyses and likely relates to a KaiAB1C1-independent function as a transcription factor. Collectively, our data demonstrate an important role of homologs of clock proteins in Synechocystis for balanced carbon and nitrogen metabolism during light-to-dark transitions.
Collapse
Affiliation(s)
- Nina M. Scheurer
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Yogeswari Rajarathinam
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stefan Timm
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Christin Köbler
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany
- *Correspondence: Annegret Wilde
| |
Collapse
|
5
|
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli. J Biosci Bioeng 2019; 128:302-306. [DOI: 10.1016/j.jbiosc.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022]
|