1
|
Yang Y, Qi Y, Su L, Yang S, Yi X, Luo L, Yu C, Cheng T, Wang J, Zhang Q, Pan H. The Marssonina rosae effector MrSEP43 suppresses immunity in rose by targeting the orphan protein RcBROG. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4993-5007. [PMID: 38706346 DOI: 10.1093/jxb/erae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Rose black spot disease, caused by Marssonina rosae (syn. Diplocarpon rosae), is one of the most widespread diseases of field-grown roses worldwide. Pathogens have been found to interfere with or stimulate plant immune responses by secreting effectors. However, the molecular mechanism involved in inhibition of the rose immune response by M. rosae effectors remains poorly understood. Here, we identified the effector MrSEP43, which plays a pivotal role in promoting the virulence of M. rosae and enhancing rose susceptibility to infection by reducing callose deposition, H2O2 accumulation, and the expression of defense genes in the jasmonic acid signaling pathway. Yeast two-hybrid, bimolecular fluorescence complementation, and split luciferase assays showed that MrSEP43 interacted with the rose orphan protein RcBROG. RcBROG, a positive regulator of defense against M. rosae, enhanced rose resistance by increasing callose deposition, H2O2 accumulation, and the expression of RcERF1 in the ethylene signaling pathway. Overall, our findings suggest that the M. rosae virulence effector MrSEP43 specifically targets the orphan protein RcBROG to suppress the rose immune response to M. rosae. These results provide new insights into how M. rosae manipulates and successfully colonizes rose leaves, and are essential for preventing the breakdown of resistance to rose black spot disease.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yucen Qi
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lin Su
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Shumin Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xingwan Yi
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Song J, Chen F, Lv B, Guo C, Yang J, Guo J, Huang L, Ning G, Yang Y, Xiang F. Comparative transcriptome and metabolome analysis revealed diversity in the response of resistant and susceptible rose ( Rosa hybrida) varieties to Marssonina rosae. FRONTIERS IN PLANT SCIENCE 2024; 15:1362287. [PMID: 38455733 PMCID: PMC10917926 DOI: 10.3389/fpls.2024.1362287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Rose black spot disease caused by Marssonina rosae is among the most destructive diseases that affects the outdoor cultivation and production of roses; however, the molecular mechanisms underlying the defensive response of roses to M. rosae have not been clarified. To investigate the diversity of response to M. rosae in resistant and susceptible rose varieties, we performed transcriptome and metabolome analyses of resistant (KT) and susceptible (FG) rose varieties and identified differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in response to M. rosae at different time points. In response to M. rosae, DEGs and DAMs were mainly upregulated compared to the control and transcription factors were concentrated in the WRKY and AP2/ERF families. Gene Ontology analysis showed that the DEGs of FG were mainly enriched in biological processes, such as the abscisic acid-activated signaling pathway, cell wall, and defense response, whereas the DEGs of KT were mainly enriched in Golgi-mediated vesicle transport processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs of both varieties were concentrated in plant-pathogen interactions, plant hormone signal transduction, and mitogen-activated protein kinase signaling pathways, with the greatest number of DEGs associated with brassinosteroid (BR) in the plant hormone signal transduction pathway. The reliability of the transcriptome results was verified by qRT-PCR. DAMs of KT were significantly enriched in the butanoate metabolism pathway, whereas DAMs of FG were significantly enriched in BR biosynthesis, glucosinolate biosynthesis, and tryptophan metabolism. Moreover, the DAMs in these pathways were significantly positively correlated with the DEGs. Disease symptoms were aggravated when FG leaves were inoculated with M. rosae after 24-epibrassinolide treatment, indicating that the response of FG to M. rosae involves the BR signaling pathway. Our results provide new insights into the molecular mechanisms underlying rose response to M. rosae and lay a theoretical foundation for formulating rose black spot prevention and control strategies and cultivating resistant varieties.
Collapse
Affiliation(s)
- Jurong Song
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Chen
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Bo Lv
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Cong Guo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jie Yang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jiaqi Guo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Li Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guogui Ning
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Yang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fayun Xiang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
3
|
Lau J, Gill H, Taniguti CH, Young EL, Klein PE, Byrne DH, Riera-Lizarazu O. QTL discovery for resistance to black spot and cercospora leaf spot, and defoliation in two interconnected F1 bi-parental tetraploid garden rose populations. FRONTIERS IN PLANT SCIENCE 2023; 14:1209445. [PMID: 37575936 PMCID: PMC10413565 DOI: 10.3389/fpls.2023.1209445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 08/15/2023]
Abstract
Garden roses are an economically important horticultural crop worldwide, and two major fungal pathogens, black spot (Diplocarpon rosae F.A. Wolf) and cercospora leaf spot of rose (Rosisphaerella rosicola Pass.), affect both the health and ornamental value of the plant. Most studies on black spot disease resistance have focused on diploid germplasm, and little work has been performed on cercospora leaf spot resistance. With the use of newly developed software tools for autopolyploid genetics, two interconnected tetraploid garden rose F1 populations (phenotyped over the course of 3 years) were used for quantitative trait locus (QTL) analysis of black spot and cercospora leaf spot resistance as well as plant defoliation. QTLs for black spot resistance were mapped to linkage groups (LGs) 1-6. QTLs for cercospora resistance and susceptibility were found in LGs 1, 4, and 5 and for defoliation in LGs 1, 3, and 5. The major locus on LG 5 for black spot resistance coincides with the previously discovered Rdr4 locus inherited from Rosa L. 'Radbrite' (Brite Eyes™), the common parent used in these mapping populations. This work is the first report of any QTL for cercospora resistance/susceptibility in tetraploid rose germplasm and the first report of defoliation QTL in roses. A major QTL for cercospora susceptibility coincides with the black spot resistance QTL on LG 5 (Rdr4). A major cercospora resistance QTL was found on LG 1. These populations provide a genetic resource that will further the knowledge base of rose genetics as more traits are studied. Studying more traits from these populations will allow for the stacking of various QTLs for desirable traits.
Collapse
Affiliation(s)
- Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | | | | | | | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Song J, Chen F, Lv B, Guo C, Yang J, Huang L, Guo J, Xiang F. Genome-Wide Identification and Expression Analysis of the TIR-NBS-LRR Gene Family and Its Response to Fungal Disease in Rose ( Rosa chinensis). BIOLOGY 2023; 12:426. [PMID: 36979118 PMCID: PMC10045381 DOI: 10.3390/biology12030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Roses, which are one of the world's most important ornamental plants, are often damaged by pathogens, resulting in serious economic losses. As a subclass of the disease resistance gene family of plant nucleotide-binding oligomerization domain (NOD)-like receptors, TIR-NBS-LRR (TNL) genes play a vital role in identifying pathogen effectors and activating defense responses. However, a systematic analysis of the TNL gene family is rarely reported in roses. Herein, 96 intact TNL genes were identified in Rosa chinensis. Their phylogenies, physicochemical characteristics, gene structures, conserved domains and motifs, promoter cis-elements, microRNA binding sites, and intra- and interspecific collinearity relationships were analyzed. An expression analysis using transcriptome data revealed that RcTNL genes were dominantly expressed in leaves. Some RcTNL genes responded to gibberellin, jasmonic acid, salicylic acid, Botrytis cinerea, Podosphaera pannosa, and Marssonina rosae (M. rosae); the RcTNL23 gene responded significantly to three hormones and three pathogens, and exhibited an upregulated expression. Furthermore, the black spot pathogen was identified as M. rosae. After inoculating rose leaves, an expression pattern analysis of the RcTNL genes suggested that they act during different periods of pathogen infection. The present study lays the foundations for an in-depth investigation of the TNL gene function and the mining of disease resistance genes in roses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fayun Xiang
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
5
|
Rawandoozi ZJ, Young EL, Yan M, Noyan S, Fu Q, Hochhaus T, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. QTL mapping and characterization of black spot disease resistance using two multi-parental diploid rose populations. HORTICULTURE RESEARCH 2022; 9:uhac183. [PMID: 37064269 PMCID: PMC10101596 DOI: 10.1093/hr/uhac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 06/17/2023]
Abstract
Black spot disease (BSD) (Diplocarpon rosae) is the most common and damaging fungal disease in garden roses (Rosa sp.). Although qualitative resistance to BSD has been extensively investigated, the research on quantitative resistance lags behind. The goal of this research was to study the genetic basis of BSD resistance in two multi-parental populations (TX2WOB and TX2WSE) through a pedigree-based analysis approach (PBA). Both populations were genotyped and evaluated for BSD incidence over five years in three locations in Texas. A total of 28 QTLs, distributed over all linkage groups (LGs), were detected across both populations. Consistent minor effect QTLs included two on LG1 and LG3 (TX2WOB and TX2WSE), two on LG4 and LG5 (TX2WSE), and one QTL on LG7 (TX2WOB). In addition, one major QTL detected in both populations was consistently mapped on LG3. This QTL was localized to an interval ranging from 18.9 to 27.8 Mbp on the Rosa chinensis genome and explained 20 and 33% of the phenotypic variation. Furthermore, haplotype analysis showed that this QTL had three distinct functional alleles. The parent PP-J14-3 was the common source of the LG3 BSD resistance in both populations. Taken together, this research presents the characterization of new SNP-tagged genetic determinants of BSD resistance, the discovery of marker-trait associations to enable parental choice based on their BSD resistance QTL haplotypes, and substrates for the development of trait-predictive DNA tests for routine use in marker-assisted breeding for BSD resistance.
Collapse
Affiliation(s)
- Zena J Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Ellen L Young
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Seza Noyan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Maad Y Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M
AgriLife Research, Texas A&M System, College Station, TX,
77843 USA
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| |
Collapse
|
6
|
Lau J, Young EL, Collins S, Windham MT, Klein PE, Byrne DH, Riera-Lizarazu O. Rose Rosette Disease Resistance Loci Detected in Two Interconnected Tetraploid Garden Rose Populations. FRONTIERS IN PLANT SCIENCE 2022; 13:916231. [PMID: 35873988 PMCID: PMC9302375 DOI: 10.3389/fpls.2022.916231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 05/14/2023]
Abstract
Rose rosette disease (RRD), caused by the Rose rosette emaravirus (RRV), is a major threat to the garden rose industry in the United States. There has been limited work on the genetics of host plant resistance to RRV. Two interconnected tetraploid garden rose F1 biparental mapping populations were created to develop high-quality tetraploid rose linkage maps that allowed the discovery of RRD resistance quantitative trait loci (QTLs) on linkage groups (LGs) 5, 6, and 7. These QTLs individually accounted for around 18-40% of the phenotypic variance. The locus with the greatest effect on partial resistance was found in LG 5. Most individuals with the LG 5 QTL were in the simplex configuration; however, two individuals were duplex (likely due to double reduction). Identification of resistant individuals and regions of interest can help the development of diagnostic markers for marker-assisted selection in a breeding program.
Collapse
Affiliation(s)
- Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Collins
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Mark T. Windham
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Young EL, Lau J, Bentley NB, Rawandoozi Z, Collins S, Windham MT, Klein PE, Byrne DH, Riera-Lizarazu O. Identification of QTLs for Reduced Susceptibility to Rose Rosette Disease in Diploid Roses. Pathogens 2022; 11:pathogens11060660. [PMID: 35745514 PMCID: PMC9227826 DOI: 10.3390/pathogens11060660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic markers for resistance could expedite breeding efforts. However, little is known about the genetics of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs. Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome 3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data from one year only. In addition, haplotypes associated with significant changes in virus quantity and severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents the first report of genetic determinants of resistance to RRD. In addition, marker trait associations discovered here will enable better parental selection when breeding for RRD resistance and pave the way for marker-assisted selection for RRD resistance.
Collapse
Affiliation(s)
- Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Nolan B. Bentley
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA;
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Sara Collins
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Mark T. Windham
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
- Correspondence: ; Tel.: +1-509-332-9075
| |
Collapse
|
8
|
Cheng B, Wan H, Han Y, Yu C, Luo L, Pan H, Zhang Q. Identification and QTL Analysis of Flavonoids and Carotenoids in Tetraploid Roses Based on an Ultra-High-Density Genetic Map. FRONTIERS IN PLANT SCIENCE 2021; 12:682305. [PMID: 34177997 PMCID: PMC8226220 DOI: 10.3389/fpls.2021.682305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Roses are highly valuable within the flower industry. The metabolites of anthocyanins, flavonols, and carotenoids in rose petals are not only responsible for the various visible petal colors but also important bioactive compounds that are important for human health. In this study, we performed a QTL analysis on pigment contents to locate major loci that determine the flower color traits. An F1 population of tetraploid roses segregating for flower color was used to construct an ultra-high-density genetic linkage map using whole-genome resequencing technology to detect genome-wide SNPs. Previously developed SSR and SNP markers were also utilized to increase the marker density. Thus, a total of 9,259 markers were mapped onto seven linkage groups (LGs). The final length of the integrated map was 1285.11 cM, with an average distance of 0.14 cM between adjacent markers. The contents of anthocyanins, flavonols and carotenoids of the population were assayed to enable QTL analysis. Across the 33 components, 46 QTLs were detected, explaining 11.85-47.72% of the phenotypic variation. The mapped QTLs were physically clustered and primarily distributed on four linkage groups, namely LG2, LG4, LG6, and LG7. These results improve the basis for flower color marker-assisted breeding of tetraploid roses and guide the development of rose products.
Collapse
Affiliation(s)
- Bixuan Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Huihua Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
9
|
Lopez Arias DC, Chastellier A, Thouroude T, Bradeen J, Van Eck L, De Oliveira Y, Paillard S, Foucher F, Hibrand-Saint Oyant L, Soufflet-Freslon V. Characterization of black spot resistance in diploid roses with QTL detection, meta-analysis and candidate-gene identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3299-3321. [PMID: 32844252 DOI: 10.1007/s00122-020-03670-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 05/10/2023]
Abstract
Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf. is efficiently controlled with fungicides. However, in the actual context of reducing agrochemical use, the demand for rose bushes with higher levels of resistance has increased. Qualitative resistance conferred by major genes (Rdr genes) has been widely studied but quantitative resistance to BSD requires further investigation. In this study, segregating populations connected through the BSD resistant Rosa wichurana male parent were phenotyped for disease resistance over several years and locations. A pseudo-testcross approach was used, resulting in six parental maps across three populations. A total of 45 individual QTLs with significant effect on BSD resistance were mapped on the male maps (on linkage groups (LG) B3, B4, B5 and B6), and 12 on the female maps (on LG A1, A2, A3, A4 and A5). Two major regions linked to BSD resistance were identified on LG B3 and B5 of the male maps and were integrated into a consensus map built from all three of the male maps. A meta-analysis was used to narrow down the confidence intervals of individual QTLs from three populations by generating meta-QTLs. Two 'hot spots' or meta-QTLs were found per LG, enabling reduction of the confidence interval to 10.42 cM for B3 and 11.47 cM for B5. An expert annotation of NBS-LRR encoding genes of the genome assembly of Hibrand et al. was performed and used to explore potential co-localization with R-genes. Co-localization with defense response genes was also investigated.
Collapse
Affiliation(s)
- D C Lopez Arias
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| | - A Chastellier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - T Thouroude
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - J Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - L Van Eck
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Yannick De Oliveira
- Génétique Quantitative Et Évolution - Le Moulon, INRAE - Université Paris-Sud - CNRS - AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - S Paillard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - F Foucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - L Hibrand-Saint Oyant
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - V Soufflet-Freslon
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
10
|
Detection of Black Spot of Rose Based on Hyperspectral Imaging and Convolutional Neural Network. AGRIENGINEERING 2020. [DOI: 10.3390/agriengineering2040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Black spot is one of the seriously damaging plant diseases in China, especially in rose production. Hyperspectral technology reflects both external features and internal structure information of measured samples, which can be used to identify the disease. In this research, both the spectral and image features of two infected roses with black spot were used to train a convolutional neural network (CNN) model. Multiple scattering correction (MSC) and standard normal variable (SNV) methods were applied to preprocess the spectral data. Cropping, median filtering and binarization were pretreatments used on the hyperspectral images. Three CNN models based on Alexnet, VGG16 and neural discriminative dimensionality reduction (NDDR) were evaluated by analyzing the classification accuracy and loss function. The results show that the CNN model based on the fusion of features has higher accuracy. The highest accuracies of detection of blackspot in different roses are 12–26 (100%) and 13–54 (99.95%), applying the NDDR-CNN model. Therefore, this research indicates that the spectral analysis based on CNN can detect black spot of roses, which provides a reference for the detection of other plant diseases, and has favorable research significance as well as prospect for development.
Collapse
|
11
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
High density SNP and SSR linkage map and QTL analysis for resistance to black spot in segregating rose population. ACTA ACUST UNITED AC 2020. [DOI: 10.17660/actahortic.2020.1283.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Zurn JD, Zlesak DC, Holen M, Bradeen JM, Hokanson SC, Bassil NV. Mapping the black spot resistance locus Rdr3 in the shrub rose 'George Vancouver' allows for the development of improved diagnostic markers for DNA-informed breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2011-2020. [PMID: 32166372 DOI: 10.1007/s00122-020-03574-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/28/2020] [Indexed: 05/22/2023]
Abstract
Rdr3 is a novel resistance gene of black spot in roses that maps to a chromosome 6 homolog. A new DNA test was developed and can be used to pyramid black spot resistance in roses. Diplocarpon rosae, the cause of rose black spot, is one of the most devastating foliar pathogens of cultivated roses (Rosa spp.). The primary method of disease control is fungicides, and they are viewed unfavorably by home gardeners due to potential environmental and health impacts. Planting rose cultivars with genetic resistance to black spot can reduce many of the fungicide applications needed in an integrated pest management system. To date, four resistance genes have been identified in roses (Rdr1, Rdr2, Rdr3, and Rdr4). Rdr3 was never mapped and is thought to be unique from Rdr1 and Rdr2. It is unknown whether it is an allele of Rdr4. To assess the novelty of Rdr3, a mapping population was created by crossing the Rdr3 containing cultivar George Vancouver with the susceptible cultivar Morden Blush. The mapping population was genotyped with the WagRhSNP 68 K Axiom array and mapped using the 'polymapR' package. Rdr3 was mapped to a chromosome 6 homolog confirming it is different from Rdr1 and Rdr2, found on chromosome 1, and from Rdr4, found on chromosome 5. The mapping information was used in conjunction with the Rosa chinensis genome assembly to develop new tightly linked SSRs for marker-assisted breeding. Three markers were able to predict the presence of Rdr3 in a 63-cultivar validation set. Additionally, 12 cultivars appear to have resistance genes other than Rdr3. The improved diagnostic markers will be a great asset to the rose-breeding community toward developing new black spot-resistant cultivars.
Collapse
Affiliation(s)
- Jason D Zurn
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, USA
| | - David C Zlesak
- Department of Plant and Earth Science, University of Wisconsin-River Falls, River Falls, WI, USA
| | - Matthew Holen
- Department of Horticulture, University of Minnesota, St. Paul, MN, USA
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Stan C Hokanson
- Department of Horticulture, University of Minnesota, St. Paul, MN, USA
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, USA.
| |
Collapse
|
14
|
Rouet C, Lee EA, Banks T, O'Neill J, LeBlanc R, Somers DJ. Identification of a polymorphism within the Rosa multiflora muRdr1A gene linked to resistance to multiple races of Diplocarpon rosae W. in tetraploid garden roses (Rosa × hybrida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:103-117. [PMID: 31563968 DOI: 10.1007/s00122-019-03443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
A QTL for resistance to several races of black spot co-located with the known Rrd1 locus in Rosa. A polymorphism in muRdr1A linked to black spot resistance was identified and molecular markers were designed. Black spot, caused by Diplocarpon rosae, is one of the most serious foliar diseases of landscape roses that reduces the marketability and weakens the plants against winter survival. Genetic resistance to black spot (BS) exists and race-specific resistance is a good target to implement marker-assisted selection. High-density single nucleotide polymorphism-based genetic maps were created for the female parent of a tetraploid cross between 'CA60' and 'Singing in the Rain' using genotyping-by-sequencing following a two-way pseudo-testcross strategy. The female linkage map was generated based on 227 individuals and included 31 linkage groups, 1055 markers, with a length of 1980 cM. Race-specific resistance to four D. rosae races (5, 7, 10, 14) was evaluated using a detached leaf assay. BS resistance was also evaluated under natural infection in the field. Resistance to races 5, 10 and 14 of D. rosae and field resistance co-located on chromosome 1. A unique sequence of 32 bp in exon 4 of the muRdr1A gene was identified in 'CA60' that co-segregates with D. rosae resistance. Two diagnostic markers, a presence/absence marker and an INDEL marker, specific to this sequence were designed and validated in the mapping population and a backcross population derived from 'CA60.' Resistance to D. rosae race 7 mapped to a different location on chromosome 1.
Collapse
Affiliation(s)
- Cindy Rouet
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada.
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - Elizabeth A Lee
- Department of Plant Agriculture, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Travis Banks
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Joseph O'Neill
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Rachael LeBlanc
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| | - Daryl J Somers
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, ON, L0R 2E0, Canada
| |
Collapse
|
15
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|