1
|
Quan J, Song S, Xing L, Liu X, Yue M. DNA methylation variation and growth in the clonal Duchesnea indica is regulated by both past and present lead environments. Epigenetics 2024; 19:2305078. [PMID: 38245907 PMCID: PMC10802196 DOI: 10.1080/15592294.2024.2305078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Studies suggest that clonal plants' ability to select habitats and forage in a heterogeneous environment is influenced by their past environment, with stress legacy potentially playing a crucial role. In this study, we examined parental ramets of Duchesnea indica Focke that were subject to either a control or lead-contaminated environment (past environment), and their newborn offspring were then transplanted into control, homogeneous lead or heterogeneous lead environment (present environment). We analysed how past and present environments affect plant growth and DNA methylation in offspring. The result shown that the DNA methylation loci composition of offspring was affected by the interaction of parental environment and offspring environment, and DNA methylation levels were higher in heterogeneous environments. Moreover, our findings indicate that offspring would thrive in the heterogeneous lead environment if they did not experience lead pollution in the past, their progeny will avoid lead toxicity by reducing underground biomass allocation. However, when the parents experienced lead stress environment, their biomass allocation strategies disappeared, and they prefer to grow in favourable patches to avoid lead-contaminated patches. We concluded that the integration of historical parental exposure to lead-contaminated and current information about their offspring's environment are impacting plant phenotypes. It is possible that the stress legacy from the parents has been transmitted to their offspring ramets, and the stress legacy is at least partly based on heritable epigenetic variation. The phenotypic variation regulated by the stress legacy affects the growth performance, biomass allocation strategy, and even the behaviour of D. indica.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Shanshan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Linya Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| |
Collapse
|
2
|
Del Dottore E, Mazzolai B. Perspectives on Computation in Plants. ARTIFICIAL LIFE 2023; 29:336-350. [PMID: 36787453 DOI: 10.1162/artl_a_00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plants thrive in virtually all natural and human-adapted environments and are becoming popular models for developing robotics systems because of their strategies of morphological and behavioral adaptation. Such adaptation and high plasticity offer new approaches for designing, modeling, and controlling artificial systems acting in unstructured scenarios. At the same time, the development of artifacts based on their working principles reveals how plants promote innovative approaches for preservation and management plans and opens new applications for engineering-driven plant science. Environmentally mediated growth patterns (e.g., tropisms) are clear examples of adaptive behaviors displayed through morphological phenotyping. Plants also create networks with other plants through subterranean roots-fungi symbiosis and use these networks to exchange resources or warning signals. This article discusses the functional behaviors of plants and shows the close similarities with a perceptron-like model that could act as a behavior-based control model in plants. We begin by analyzing communication rules and growth behaviors of plants; we then show how we translated plant behaviors into algorithmic solutions for bioinspired robot controllers; and finally, we discuss how those solutions can be extended to embrace original approaches to networking and robotics control architectures.
Collapse
Affiliation(s)
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia.
| |
Collapse
|
3
|
Rodriguez-Quintero WD, Moreno-Chacón M, Carrasco-Urra F, Saldaña A. From dark to darkness, negative phototropism influences the support-tree location of the massive woody climber Hydrangea serratifolia (Hydrangeaceae) in a Chilean temperate rainforest. PLANT SIGNALING & BEHAVIOR 2022; 17:2122244. [PMID: 36476262 PMCID: PMC9733698 DOI: 10.1080/15592324.2022.2122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/17/2023]
Abstract
Climbing plants rely on suitable support to provide the light conditions they require in the canopy. Negative phototropism is a directional search behavior proposed to detect a support-tree, which indicates growth or movement away from light, based on light attenuation. In a Chilean temperate rainforest, we addressed whether the massive woody climber Hydrangea serratifolia (H. et A.) F. Phil (Hydrangeaceae) presents a support-tree location pattern influenced by light availability. We analyzed direction and light received in two groups of juvenile shoots: searching shoots (SS), with plagiotropic (creeping) growth vs. ascending shoots (AS), with orthotropic growth. We found that, in accordance with light attenuation, SS and AS used directional orientation to search and then ascend host trees. The light available to H. serratifolia searching shoots was less than that of the general forest understory; the directional orientation in both groups showed a significant deviation from a random distribution, with no circular statistical difference between them. Circular-linear regression indicated a relationship between directional orientations and light availability. Negative phototropism encodes the light environment's heterogeneous spatial and temporal information, guiding the shoot apex to the most shaded part of the support-tree base, the climbing start point.
Collapse
Affiliation(s)
- W. David Rodriguez-Quintero
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
- Centro de Ecología Aplicada Ltda, Principe de Gales6465La Reina, Chile
| | | | | | - Alfredo Saldaña
- Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
4
|
Parise AG, de Toledo GRA, Oliveira TFDC, Souza GM, Castiello U, Gagliano M, Marder M. Do plants pay attention? A possible phenomenological-empirical approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 173:11-23. [PMID: 35636584 DOI: 10.1016/j.pbiomolbio.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Attention is the important ability of flexibly controlling limited cognitive resources. It ensures that organisms engage with the activities and stimuli that are relevant to their survival. Despite the cognitive capabilities of plants and their complex behavioural repertoire, the study of attention in plants has been largely neglected. In this article, we advance the hypothesis that plants are endowed with the ability of attaining attentive states. We depart from a transdisciplinary basis of philosophy, psychology, physics and plant ecophysiology to propose a framework that seeks to explain how plant attention might operate and how it could be studied empirically. In particular, the phenomenological approach seems particularly important to explain plant attention theoretically, and plant electrophysiology seems particularly suited to study it empirically. We propose the use of electrophysiological techniques as a viable way for studying it, and we revisit previous work to support our hypothesis. We conclude this essay with some remarks on future directions for the study of plant attention and its implications to botany.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil.
| | - Gabriel Ricardo Aguilera de Toledo
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Thiago Francisco de Carvalho Oliveira
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Umberto Castiello
- Neuroscience of Movement Laboratory (NEMO), Department of General Psychology, University of Padova, Padova, Italy
| | - Monica Gagliano
- Biological Intelligence Laboratory (BI Lab), School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Michael Marder
- Ikerbasque: Basque Foundation for Science & Department of Philosophy, University of the Basque Country (UPV/EHU), Spain
| |
Collapse
|
5
|
Tie D, Guo Y, Zhu C, Quan J, Liu S, Zhou Z, Chai Y, Yue M, Liu X. Parental UV-B radiation regulates the habitat selection of clonal Duchesnea indica in heterogeneous light environments. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:600-612. [PMID: 35272763 DOI: 10.1071/fp21253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Habitat selection behaviour is an effective strategy adopted by clonal plants in heterogeneous understorey light environments, and it is likely regulated by the parental environment's ultraviolet-B radiation levels (UV-B) due to the photomorphogenesis of UV-B and maternal effects. Here, parental ramets of Duchesnea indica were treated with two UV-B radiation levels [high (UV5 group) and low (UV10 group)], newborn offspring were grown under a heterogeneous light environment (ambient light vs shade habitat), and the growth and DNA methylation variations of parents and offspring were analysed. The results showed that parental UV-B affected not only the growth of the parent but also the offspring. The offspring of different UV-B-radiated parents showed different performances. Although these offspring all displayed a tendency to escape from light environments, such as entering shade habitats earlier, and allocating more biomass under shade (33.06% of control, 42.28% of UV5 and 72.73% of UV10), these were particularly obvious in offspring of the high UV-B parent. Improvements in epigenetic diversity (4.77 of control vs 4.83 of UV10) and total DNA methylation levels (25.94% of control vs 27.15% of UV10) and the inhibition of shade avoidance syndrome (denser growth with shorter stolons and internodes) were only observed in offspring of high UV-B parents. This difference was related to the eustress and stress effects of low and high UV-B, respectively. Overall, the behaviour of D. indica under heterogeneous light conditions was regulated by the parental UV-B exposure. Moreover, certain performance improvements helped offspring pre-regulate growth to cope with future environments and were probably associated with the effects of maternal DNA methylation variations in UV-B-radiated parents.
Collapse
Affiliation(s)
- Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China; and Linyou Branch of Baoji Tobacco Company, Linyou County, Baoji, China
| | - Yuehan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Chunrui Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Shiqiang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Zhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
6
|
Quan J, Münzbergová Z, Latzel V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on
Trifolium repens. Ecol Evol 2022; 12:e8959. [PMID: 35646308 PMCID: PMC9130644 DOI: 10.1002/ece3.8959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Stress can be remembered by plants in a form of stress legacy that can alter future phenotypes of previously stressed plants and even phenotypes of their offspring. DNA methylation belongs among the mechanisms mediating the stress legacy. It is however not known for how long the stress legacy is carried by plants. If the legacy is long‐lasting, it can become maladaptive in situations when parental–offspring environment do not match. We investigated for how long after the last exposure of a parental plant to drought can the phenotype of its clonal offspring be altered. We grew parental plants of three genotypes of Trifolium repens for five months either in control conditions or in control conditions that were interrupted with intense drought periods applied for two months in four different time slots. We also treated half of the parental plants with a demethylating agent (5‐azacytidine, 5‐azaC) to test for the potential role of DNA methylation in the stress memory. Then, we transplanted parental cuttings (ramets) individually to control environment and allowed them to produce offspring ramets for two months. The drought stress experienced by parents affected phenotypes of offspring ramets. The stress legacy resulted in enhanced number of offspring ramets originating from plants that experienced drought stress even 56 days before their transplantation to the control environment. 5‐azaC altered transgenerational effects on offspring ramets. We confirmed that drought stress can trigger transgenerational effects in T. repens that is very likely mediated by DNA methylation. Most importantly, the stress legacy in parental plants persisted for at least 8 weeks suggesting that the stress legacy can persist in a clonal plant Trifolium repens for relatively long period. We suggest that the stress legacy should be considered in future ecological studies on clonal plants.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education Northwest University Xi’an China
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
- Department of Botany Faculty of Science Charles University Prague Czech Republic
| | - Vít Latzel
- Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
| |
Collapse
|
7
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
8
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021; 258:459-476. [PMID: 33196907 PMCID: PMC8052213 DOI: 10.1007/s00709-020-01579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844 USA
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
9
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021. [PMID: 33196907 DOI: 10.1007/s00709-026-01579-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, 83844, USA.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
10
|
Quan J, Latzel V, Tie D, Zhang Y, Münzbergová Z, Chai Y, Liu X, Yue M. Ultraviolet B Radiation Triggers DNA Methylation Change and Affects Foraging Behavior of the Clonal Plant Glechoma longituba. FRONTIERS IN PLANT SCIENCE 2021; 12:633982. [PMID: 33719308 PMCID: PMC7952652 DOI: 10.3389/fpls.2021.633982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 06/01/2023]
Abstract
Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants' foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of "escape strategy." Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| |
Collapse
|
11
|
Cognition in some surprising places. Biochem Biophys Res Commun 2020; 564:150-157. [PMID: 32950231 DOI: 10.1016/j.bbrc.2020.08.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The most widely accepted view in the biopsychological sciences is that the cognitive functions that are diagnostic of mental operations, sentience or, more commonly, consciousness emerged fairly late in evolution, most likely in the Cambrian period. Our position dovetails with James's below - subjectivity, feeling, consciousness has a much longer evolutionary history, one that goes back to the first appearance of life. The Cellular Basis of Consciousness (CBC) model is founded on the presumption that sentience and life are coterminous; that all organisms, based on inherent cellular activities via processes that take place in excitable membranes of their cells, are sentient, have subjective experiences and feelings. These, in turn, guide the context-relevant behaviors essential for their survival in often hostile environments in constant flux. The CBC framework is reductionistic, mechanistic, and calls for bottom-up research programs into the evolutionary origin of biological consciousness.
Collapse
|