1
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
2
|
Yang C, Yi Y, Wang J, Ge L, Zhang L, Liu M. Phylogenetic Analysis of the PR-4 Gene Family in Euphorbiaceae and Its Expression Profiles in Tung Tree ( Vernicia fordii). PLANTS (BASEL, SWITZERLAND) 2023; 12:3154. [PMID: 37687401 PMCID: PMC10490464 DOI: 10.3390/plants12173154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Pathogenesis-related protein-4 (PR-4) is generally believed to be involved in physiological processes. However, a comprehensive investigation of this protein in tung tree (Vernicia fordii) has yet to be conducted. In this study, we identified 30 PR-4 genes in the genomes of Euphorbiaceae species and investigated their domain organization, evolution, promoter cis-elements, expression profiles, and expression profiles in the tung tree. Sequence and structural analyses indicated that VF16136 and VF16135 in the tung tree could be classified as belonging to Class II and I, respectively. Phylogenetic and Ka/Ks analyses revealed that Hevea brasiliensis exhibited a significantly expanded number of PR-4 genes. Additionally, the analysis of promoter cis-elements suggested that two VfPR-4 genes may play a role in the response to hormones and biotic and abiotic stress of tung trees. Furthermore, the expression patterns of VfPR-4 genes and their responses to 6-BA, salicylic acid, and silver nitrate in inflorescence buds of tung trees were evaluated using qRT-PCR. Notably, the expression of two VfPR-4 genes was found to be particularly high in leaves and early stages of tung seeds. These results suggest that VF16136 and VF16135 may have significant roles in the development of leaves and seeds in tung trees. Furthermore, these genes were found to be responsive to 6-BA, salicylic acid, and silver nitrate in the development of inflorescence buds. This research provides valuable insights for future investigation into the functions of PR-4 genes in tung trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410001, China; (C.Y.)
| |
Collapse
|
3
|
The Phytopathogen Fusarium verticillioides Modifies the Intestinal Morphology of the Sugarcane Borer. Pathogens 2023; 12:pathogens12030443. [PMID: 36986365 PMCID: PMC10056812 DOI: 10.3390/pathogens12030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Background: In tropical sugarcane crops, the fungus Fusarium verticillioides, the agent responsible for the occurrence of the red rot complex, occurs in association with the sugarcane borer Diatraea saccharalis. This fungus, in addition to being transmitted vertically, can manipulate both the insect and the plant for its own dissemination in the field. Due to the complex interaction between F. verticillioides and D. saccharalis, and the high incidence of the fungus in the intestinal region, our objective was to investigate whether F. verticillioides could alter the intestinal structure of the insect. Methods: We combined analysis of scanning electron microscopy and light microscopy to identify whether the presence of the fungus F. verticillioides, in artificial diets or in sugarcane, could lead to any alteration or regional preference in the insect’s intestinal ultrastructure over the course of its development, or its offspring development, analyzing the wall and microvillous structures of the mid-digestive system. Results: Here, we show that the fungus F. verticillioides alters the intestinal morphology of D. saccharalis, promoting an increase of up to 3.3 times in the thickness of the midgut compared to the control. We also observed that the phytopathogen colonizes the intestinal microvilli for reproduction, suggesting that this region can be considered the gateway of the fungus to the insect’s reproductive organs. In addition, the colonization of this region promoted the elongation of microvillous structures by up to 180% compared to the control, leading to an increase in the area used for colonization. We also used the fungus Colletotrichum falcatum in the tests, and it did not differ from the control in any test, showing that this interaction is specific between D. saccharalis and F. verticillioides. Conclusions: The phytopathogenic host F. verticillioides alters the intestinal morphology of the vector insect in favor of its colonization.
Collapse
|
4
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Wang L, Lu H, Zhan J, Shang Q, Wang L, Yin W, Sa W, Liang J. Pathogenesis-related protein-4 (PR-4) gene family in Qingke (Hordeum vulgare L. var. nudum): genome-wide identification, structural analysis and expression profile under stresses. Mol Biol Rep 2022; 49:9397-9408. [PMID: 36008607 DOI: 10.1007/s11033-022-07794-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pathogenesis-related (PR) proteins are active participants of plant defense against biotic and abiotic stresses. The PR-4 family features a Barwin domain at the C-terminus, which endows the host plant with disease resistance. However, comprehensive analysis of PR-4 genes is still lacking in Qingke (Hordeum vulgare L. var. nudum). METHODS AND RESULTS Herein, a total of four PR-4 genes were identified from the genome of Qingke through HMM profiling. Devoid of the chitin-binding domain, these 4 proteins were grouped as class II PR-4s. Phylogenic analysis revealed that 127 PR-4s from 47 species were clustered into 3 major groups, among which the four Qingke PR-4s were claded into group I. Analysis of gene structure demonstrated that no intron was found in 3 out of the 4 Qingke PR-4s, and HOVUSG0928500 was the only gene contained one intron. An array of cis-acting motifs were detected in promoters of Qingke PR-4 genes, including elements associated with hormone response, light response, stress response, growth and development processes and binding sites of transcription factors, implying their diverse role. Expression profiling confirmed that Qingke PR-4s were involved in defense response against drought, cold and powdery mildews infection, and transcription of HOVUSG1974300 and HOVUSG5705400 was differentially regulated by MeJA and SA. CONCLUSION Findings of the study provided insights into the genetic basis of the PR-4 family genes, and would promote further investigation on protein function and utilization.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Hailing Lu
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Jiarong Zhan
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China
| | - Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China.
- College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China.
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, 810016, Xi'ning, China.
| |
Collapse
|
6
|
Zhang Q, Zhou M, Wang J. Increasing the activities of protective enzymes is an important strategy to improve resistance in cucumber to powdery mildew disease and melon aphid under different infection/infestation patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:950538. [PMID: 36061767 PMCID: PMC9428622 DOI: 10.3389/fpls.2022.950538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew, caused by Sphaerotheca fuliginea (Schlecht.) Poll., and melon aphids (Aphis gossypii Glover) are a typical disease and insect pest, respectively, that affect cucumber production. Powdery mildew and melon aphid often occur together in greenhouse production, resulting in a reduction in cucumber yield. At present there are no reports on the physiological and biochemical effects of the combined disease and pest infection/infestation on cucumber. This study explored how cucumbers can regulate photosynthesis, protective enzyme activity, and basic metabolism to resist the fungal disease and aphids. After powdery mildew infection, the chlorophyll and free proline contents in cucumber leaves decreased, while the activities of POD (peroxidase) and SOD (superoxide dismutase) and the soluble protein and MDA (malondialdehyde) contents increased. Cucumber plants resist aphid attack by increasing the rates of photosynthesis and basal metabolism, and also by increasing the activities of protective enzymes. The combination of powdery mildew infection and aphid infestation reduced photosynthesis and basal metabolism in cucumber plants, although the activities of several protective enzymes increased. Aphid attack after powdery mildew infection or powdery mildew infection after aphid attack had the opposite effect on photosynthesis, protective enzyme activity, and basal metabolism regulation. Azoxystrobin and imidacloprid increased the contents of chlorophyll, free proline, and soluble protein, increased SOD activity, and decreased the MDA content in cucumber leaves. However, these compounds had the opposite effect on the soluble sugar content and POD and CAT (catalase) activities. The mixed ratio of the two single agents could improve the resistance of cucumber to the combined infection of powdery mildew and aphids. These results show that cucumber can enhance its pest/pathogen resistance by changing physiological metabolism when exposed to a complex infection system of pathogenic microorganisms and insect pests.
Collapse
Affiliation(s)
| | | | - Jungang Wang
- College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Chayjarung P, Phonherm M, Inmano O, Kongbangkerd A, Wongsa T, Limmongkon A. Influence of peanut hairy root cultivars on prenylated stilbenoid production and the response mechanism for combining the elicitors of chitosan, methyl jasmonate, and cyclodextrin. PLANTA 2022; 256:32. [PMID: 35794498 DOI: 10.1007/s00425-022-03946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Peanut cultivars are known to produce stilbene compounds. Transcriptional control plays a key role in the early stages of the stress response mechanism, involving both PR-proteins and stilbene compounds. In this study, the production of stilbenoid compounds, especially prenylated, was investigated in two cultivars of peanut hairy root lines, designated as K2-K599 and T9-K599 elicited with a combination of chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT + MeJA + CD. The antioxidant activities and stilbenoid content of both K2-K599 and T9-K599 hairy root lines increased significantly during the elicitation period. The T9-K599 hairy root line expressed higher ABTS and FRAP antioxidant activities than the K2-K599 line while the latter exhibited greater total phenolic content than the former at all-time points. Additionally, the K2-K599 line exhibited more stilbene compounds, including trans-resveratrol, trans-arachidin-1, and trans-arachidin-3 than the T9-K599 line, which showed statistically significant differences at all-time points. Gene expression of the enzyme involved in the stilbene biosynthesis pathway (PAL, RS, RS3) was observed, responding early to elicitor treatment and the metabolic production of a high level of stilbenoid compounds at a later stage. The antioxidant enzyme (CuZn-SOD, APX, GPX) and pathogenesis-related protein (PR; PR4A, PR5, PR10, chitinase) genes were strongly expressed after elicitor treatment at 24 h and decreased with an increasing elicitation time. Investigation of the response mechanism illustrates that the elicitor treatment can affect various plant responses, including plant cell wall structure and integrity, antioxidant system, PR-proteins, and secondary plant metabolites at different time points after facing external environmental stimuli.
Collapse
Affiliation(s)
- Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Montinee Phonherm
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Onrut Inmano
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanakorn Wongsa
- Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng phet, 62000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
8
|
Khandagale K, Roylawar P, Kulkarni O, Khambalkar P, Ade A, Kulkarni A, Singh M, Gawande S. Comparative Transcriptome Analysis of Onion in Response to Infection by Alternaria porri (Ellis) Cifferi. FRONTIERS IN PLANT SCIENCE 2022; 13:857306. [PMID: 35481153 PMCID: PMC9036366 DOI: 10.3389/fpls.2022.857306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| |
Collapse
|
9
|
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Colletotrichum falcatum modulates the olfactory behavior of the sugarcane borer, favoring pathogen infection. FEMS Microbiol Ecol 2022; 98:6554243. [PMID: 35333339 DOI: 10.1093/femsec/fiac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Some pathogens can manipulate their host plants and insects to optimize their fitness, increasing the attraction of insects to the infected plant in ways that facilitate pathogen acquisition. In tropical American sugarcane crops, the fungus Colletotrichum falcatum, the red rot causal agent, usually occurs in association with the sugarcane borer Diatraea saccharalis, resulting in large losses of this crop. Considering this association, we aimed to identify the effects of C. falcatum on D. saccharalis host preference and performance as well as the effect of this insect on C. falcatum sugarcane infection. Here, we show that the fungus C. falcatum modulates D. saccharalis behavior to its own benefit. More specifically, C. falcatum-infected sugarcane plants showed a dramatic increase in VOCs, luring D. saccharalis females to lay eggs on these plants. Therefore, sugarcane infection by the fungus C. falcatum increased in cooccurrence with insect herbivory, benefiting the pathogen when associated with D. saccharalis.
Collapse
Affiliation(s)
- Flávia P Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Amanda C Túler
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Diego Z Gallan
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Felipe G Gonçalves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Arodí P Favaris
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Maria Fernanda G V Peñaflor
- Departamento de Entomologia, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, 37200-000 Lavras, MG, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, 95616 Davis, CA, USA
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - José Maurício S Bento
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
10
|
Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, Peñaflor MFGV, Leal WS, Moura DS, Bento JMS, Silva-Filho MC. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. THE ISME JOURNAL 2021; 15:3522-3533. [PMID: 34127802 PMCID: PMC8630062 DOI: 10.1038/s41396-021-01010-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.
Collapse
Affiliation(s)
- Flávia P. Franco
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Amanda C. Túler
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Diego Z. Gallan
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Felipe G. Gonçalves
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Arodí P. Favaris
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | | | - Walter S. Leal
- grid.27860.3b0000 0004 1936 9684Department of Molecular and Cellular Biology, University of California, Davis, CA USA
| | - Daniel S. Moura
- grid.11899.380000 0004 1937 0722Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - José Maurício S. Bento
- grid.11899.380000 0004 1937 0722Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| | - Marcio C. Silva-Filho
- grid.11899.380000 0004 1937 0722Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP Brazil
| |
Collapse
|
11
|
Maia LBL, Pereira HD, Garratt RC, Brandão-Neto J, Henrique-Silva F, Toyama D, Dias RO, Bachega JFR, Peixoto JV, Silva-Filho MC. Structural and Evolutionary Analyses of PR-4 SUGARWINs Points to a Different Pattern of Protein Function. FRONTIERS IN PLANT SCIENCE 2021; 12:734248. [PMID: 34567046 PMCID: PMC8458871 DOI: 10.3389/fpls.2021.734248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
SUGARWINs are PR-4 proteins associated with sugarcane defense against phytopathogens. Their expression is induced in response to damage by Diatraea saccharalis larvae. These proteins play an important role in plant defense, in particular against fungal pathogens, such as Colletothricum falcatum (Went) and Fusarium verticillioides. The pathogenesis-related protein-4 (PR-4) family is a group of proteins equipped with a BARWIN domain, which may be associated with a chitin-binding domain also known as the hevein-like domain. Several PR-4 proteins exhibit both chitinase and RNase activity, with the latter being associated with the presence of two histidine residues H11 and H113 (BARWIN) [H44 and H146, SUGARWINs] in the BARWIN-like domain. In sugarcane, similar to other PR-4 proteins, SUGARWIN1 exhibits ribonuclease, chitosanase and chitinase activities, whereas SUGARWIN2 only exhibits chitosanase activity. In order to decipher the structural determinants involved in this diverse range of enzyme specificities, we determined the 3-D structure of SUGARWIN2, at 1.55Å by X-ray diffraction. This is the first structure of a PR-4 protein where the first histidine has been replaced by asparagine and was subsequently used to build a homology model for SUGARWIN1. Molecular dynamics simulations of both proteins revealed the presence of a flexible loop only in SUGARWIN1 and we postulate that this, together with the presence of the catalytic histidine at position 42, renders it competent as a ribonuclease. The more electropositive surface potential of SUGARWIN1 would also be expected to favor complex formation with RNA. A phylogenetic analysis of PR-4 proteins obtained from 106 Embryophyta genomes showed that both catalytic histidines are widespread among them with few replacements in these amino acid positions during the gene family evolutionary history. We observe that the H11 replacement by N11 is also present in two other sugarcane PR-4 proteins: SUGARWIN3 and SUGARWIN4. We propose that RNase activity was present in the first Embryophyta PR-4 proteins but was recently lost in members of this family during the course of evolution.
Collapse
Affiliation(s)
| | | | | | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus Didcot, Harwell, United Kingdom
| | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazi
| | - Renata O. Dias
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - José Fernando Ruggiero Bachega
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Julia Vasconcellos Peixoto
- Programa de Pós-Graduação de Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio C. Silva-Filho
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
12
|
Yakhlef M, Giangrieco I, Ciardiello MA, Fiume I, Mari A, Souiki L, Pocsfalvi G. Potential allergenicity of Medicago sativa investigated by a combined IgE-binding inhibition, proteomics and in silico approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1182-1192. [PMID: 32790067 DOI: 10.1002/jsfa.10730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L) is one of the most planted crops worldwide primarily used to feed animals. The use of alfalfa in human diet as sprouts, infusions and nutritional supplements is rapidly gaining popularity. Despite this, allergenicity assessment of this novel plant food is largely lacking. RESULTS Here, leaf protein extract of alfalfa was studied using a combined proteomics, Immunoglobulin E (IgE)-binding inhibition assay and in silico approach to find potential allergens. We have identified and annotated 129 proteins using in-gel digestion proteomics and Blast2Go suit. A search against COMPARE database, using the identified proteins as query sequences, revealed high similarity with several allergenic proteins. The Single Point Highest Inhibition Achievable assay (SPHIAa) performed on the multiplex FABER® allergy testing system confirmed the in silico results and showed some additional potential allergens. This approach allowed the detection of proteins in alfalfa leaves cross-reacting with plant allergens from three different allergen families such as lipid transfer, thaumatin-like and Bet v 1-like protein families. In addition, the absence of structural determinants cross-reacting with seed storage allergenic proteins and with animal allergens was recorded. CONCLUSION This study reports for the first time potential allergenic proteins in alfalfa. The results suggest that this plant food can be safely introduced, as a protein-rich supplement, in the diet of patients allergic to animal food allergens. Allergic patients towards certain plant food allergens need to be careful about consuming alfalfa because they might have allergic symptoms. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marwa Yakhlef
- Laboratoire de Biologie, Eau et Environnement, Department of Biology, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et l'Univers, Université 8 Mai 1945 Guelma, Guelma, Algeria
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria A Ciardiello
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Adriano Mari
- Allergy Data Laboratories (ADL), Latina, Italy
- Associated Centre for Molecular Allergology, Rome, Italy
| | - Lynda Souiki
- Department of Biology, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre et l'Univers, Université 8 Mai 1945 Guelma, Guelma, Algeria
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| |
Collapse
|
13
|
Palukaitis P, Yoon JY. R gene mediated defense against viruses. Curr Opin Virol 2020; 45:1-7. [PMID: 32402925 DOI: 10.1016/j.coviro.2020.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
The relationship of Resistance (R) gene-mediated defense to other forms of resistance in plants is considered, and the natures of the products of dominant and recessive R genes are reviewed. Various factors involved in expressing R gene-mediated resistance are described. These include phytohormones and plant effector molecules: the former regulating different pathways for disease resistance and the latter having direct effects on viral genomes or encoded proteins. Finally, the status of our knowledge concerning the cell-death hypersensitive response and its relationship to the actual resistance response involved in inhibiting virus infection is examined.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea.
| | - Ju-Yeon Yoon
- Virology Unit, Horticultural and Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
14
|
Parvaiz A, Mustafa G, Khan HMWA, Joyia FA, Niazi AK, Anwar S, Khan MS. Field evaluation ratified by transcript and computational analyses unveils myco-protective role of SUGARWIN proteins in sugarcane. 3 Biotech 2019; 9:377. [PMID: 31588401 DOI: 10.1007/s13205-019-1896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
Abstract
Nine elite sugarcane genotypes (SPF-234, CPF-246, CPF-247, CPF-248, HSF-240, CP-77-400, S-2006-US-658, S-2003-US-127 and S-2006-US-633) were assessed for field level tolerance against Colletotrichum falcatum followed by quantitative expression and computational analyses of mycoprotective proteins. Plug inoculation method was used to assess level of tolerance of aforementioned genotypes while growing in the field. Genotype S-2006-US-658 was categorized as resistant whereas genotypes CPF-246, CPF-248, HSF-240, S-2003-US-127, S-2006-US-633 and CP-77-400 were categorized as moderately resistant and genotypes SPF-234, CPF-247 as moderately susceptible. Quantitative transcript analyses also revealed that the expression of mycoprotective genes (SUGARWIN1 and SUGARWIN2) was maximum in genotype CPF-246 whereas lowest in genotype SPF-234. Hence these mycoprotective proteins play some critical role in fungal pathogen protection as genotypes with higher expression are more tolerant compared to the genotypes with lower expression of mycoprotective proteins. In-silico interaction of these mycoprotective proteins with chitin, glucan, chitosan and mannan (the core constituents of fungal cell wall) also validated their role in disease susceptibility or resistance. These studies will prove a step forward in understanding mycoprotective proteins and can be employed to develop molecular markers for the selection and screening of red rot resistant sugarcane varieties resulting in enhanced productivity of this valuable cash crop.
Collapse
|