1
|
Shahwar D, Khan Z, Park Y. Molecular Markers for Marker-Assisted Breeding for Biotic and Abiotic Stress in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2024; 25:6307. [PMID: 38928017 PMCID: PMC11204097 DOI: 10.3390/ijms25126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Melon (Cucumis melo L.) is a globally grown crop renowned for its juice and flavor. Despite growth in production, the melon industry faces several challenges owing to a wide range of biotic and abiotic stresses throughout the growth and development of melon. The aim of the review article is to consolidate current knowledge on the genetic mechanism of both biotic and abiotic stress in melon, facilitating the development of robust, disease-resistant melon varieties. A comprehensive literature review was performed, focusing on recent genetic and molecular advancements related to biotic and abiotic stress responses in melons. The review emphasizes the identification and analysis of quantitative trait loci (QTLs), functional genes, and molecular markers in two sections. The initial section provides a comprehensive summary of the QTLs and major and minor functional genes, and the establishment of molecular markers associated with biotic (viral, bacterial, and fungal pathogens, and nematodes) and abiotic stress (cold/chilling, drought, salt, and toxic compounds). The latter section briefly outlines the molecular markers employed to facilitate marker-assisted backcrossing (MABC) and identify cultivars resistant to biotic and abiotic stressors, emphasizing their relevance in strategic marker-assisted melon breeding. These insights could guide the incorporation of specific traits, culminating in developing novel varieties, equipped to withstand diseases and environmental stresses by targeted breeding, that meet both consumer preferences and the needs of melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Nonaka S, Ezura H. Possibility of genome editing for melon breeding. BREEDING SCIENCE 2024; 74:47-58. [PMID: 39246433 PMCID: PMC11375426 DOI: 10.1270/jsbbs.23074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 09/10/2024]
Abstract
Genome editing technologies are promising for conventional mutagenesis breeding, which takes a long time to remove unnecessary mutations through backcrossing and create new lines because they directly modify the target genes of elite strains. In particular, this technology has advantages for traits caused by the loss of function. Many efforts have been made to utilize this technique to introduce valuable features into crops, including maize, soybeans, and tomatoes. Several genome-edited crops have already been commercialized in the US and Japan. Melons are an important vegetable crop worldwide, produced and used in various areas. Therefore, many breeding efforts have been made to improve its fruit quality, resistance to plant diseases, and stress tolerance. Quantitative trait loci (QTL) analysis was performed, and various genes related to important traits were identified. Recently, several studies have shown that the CRISPR/Cas9 system can be applied to melons, resulting in its possible utilization as a breeding technique. Focusing on two productivity-related traits, disease resistance, and fruit quality, this review introduces the progress in genetics, examples of melon breeding through genome editing, improvements required for breeding applications, and the possibilities of genome editing in melon breeding.
Collapse
Affiliation(s)
- Satoko Nonaka
- Laboratory of Vegetable and Ornamental Horticulture, Institute of Life and Environmental Sciences and Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Laboratory of Vegetable and Ornamental Horticulture, Institute of Life and Environmental Sciences and Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
3
|
López-Martín M, Montero-Pau J, Ylla G, Gómez-Guillamón ML, Picó B, Pérez-de-Castro A. Insights into the early transcriptomic response against watermelon mosaic virus in melon. BMC PLANT BIOLOGY 2024; 24:58. [PMID: 38245701 PMCID: PMC10799517 DOI: 10.1186/s12870-024-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Watermelon mosaic virus (WMV) is one of the most prevalent viruses affecting melon worldwide. Recessive resistance to WMV in melon has previously been reported in the African accession TGR-1551. Moreover, the genomic regions associated to the resistance have also been described. Nevertheless, the transcriptomic response that might infer the resistance to this potyvirus has not been explored. RESULTS We have performed a comparative transcriptomic analysis using mock and WMV-inoculated plants of the susceptible cultivar "Bola de oro" (BO) and a resistant RIL (Recombinant inbred line) derived from the initial cross between "TGR-1551" and BO. In total, 616 genes were identified as differentially expressed and the weighted gene co-expression network analysis (WGCNA) detected 19 gene clusters (GCs), of which 7 were differentially expressed for the genotype x treatment interaction term. SNPs with a predicted high impact on the protein function were detected within the coding regions of most of the detected DEGs. Moreover, 3 and 16 DEGs were detected within the QTL regions previously described in chromosomes 11 and 5, respectively. In addition to these two specific genomic regions, we also observde large transcriptomic changes from genes spread across the genome in the resistant plants in response to the virus infection. This early response against WMV implied genes involved in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway or ubiquitin mediated proteolysis, in detriment to the photosynthetic and basal metabolites pathways. Moreover, the gene MELO3C021395, which coded a mediator of RNA polymerase II transcription subunit 33A (MED33A), has been proposed as the candidate gene located on chromosome 11 conferring resistance to WMV. CONCLUSIONS The comparative transcriptomic analysis presented here showed that, even though the resistance to WMV in TGR-1551 has a recessive nature, it triggers an active defense response at a transcriptomic level, which involves broad-spectrum resistance mechanisms. Thus, this study represents a step forward on our understanding of the mechanisms underlaying WMV resistance in melon. In addition, it sheds light into a broader topic on the mechanisms of recessive resistances.
Collapse
Affiliation(s)
- María López-Martín
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Javier Montero-Pau
- Instituto Cavanilles de biodiversidad y la biología evolutiva (ICBIBE), Universidad de Valencia, C/ del Catedrátic José Beltrán Martínez, 2, 46980, Paterna, Spain
| | - Guillem Ylla
- Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - María Luisa Gómez-Guillamón
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, CSIC-UMA, Avda. Dr. Wienberg s/n, 29750, Málaga, Spain
| | - Belén Picó
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain
| | - Ana Pérez-de-Castro
- COMAV, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Cno. de Vera, s/n, 46022, València, Spain.
| |
Collapse
|
4
|
Giordano A, Ferriol I, López-Moya JJ, Martín-Hernández AM. cmv1-Mediated Resistance to CMV in Melon Can Be Overcome by Mixed Infections with Potyviruses. Viruses 2023; 15:1792. [PMID: 37766198 PMCID: PMC10535032 DOI: 10.3390/v15091792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance to cucumber mosaic virus (CMV) strain LS in melon is controlled by the gene cmv1, which restricts phloem entry. In nature, CMV is commonly found in mixed infections, particularly with potyviruses, where a synergistic effect is frequently produced. We have explored the possibility that this synergism could help CMV-LS to overcome cmv1-mediated resistance. We demonstrate that during mixed infection with a potyvirus, CMV-LS is able to overcome cmv1-controlled resistance and develop a systemic infection and that this ability does not depend on an increased accumulation of CMV-LS in mechanically inoculated cotyledons. Likewise, during a mixed infection initiated by aphids, the natural vector of both cucumoviruses and potyviruses that can very efficiently inoculate plants with a low number of virions, CMV-LS also overcomes cmv1-controlled resistance. This indicates that in the presence of a potyvirus, even a very low amount of inoculum, can be sufficient to surpass the resistance and initiate the infection. These results indicate that there is an important risk for this resistance to be broken in nature as a consequence of mixed infections, and therefore, its deployment in elite cultivars would not be enough to ensure a long-lasting resistance.
Collapse
Affiliation(s)
- Andrea Giordano
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Inmaculada Ferriol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (A.G.); (I.F.); (J.J.L.-M.)
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|
6
|
Real N, Villar I, Serrano I, Guiu-Aragonés C, Martín-Hernández AM. Mutations in CmVPS41 controlling resistance to cucumber mosaic virus display specific subcellular localization. PLANT PHYSIOLOGY 2023; 191:1596-1611. [PMID: 36527697 PMCID: PMC10022621 DOI: 10.1093/plphys/kiac583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Resistance to cucumber mosaic virus (CMV) in melon (Cucumis melo L.) has been described in several exotic accessions and is controlled by a recessive resistance gene, cmv1, that encodes a vacuolar protein sorting 41 (CmVPS41). cmv1 prevents systemic infection by restricting the virus to the bundle sheath cells, preventing viral phloem entry. CmVPS41 from different resistant accessions carries two causal mutations, either a G85E change, found in Pat-81 and Freeman's cucumber, or L348R, found in PI161375, cultivar Songwhan Charmi (SC). Here, we analyzed the subcellular localization of CmVPS41 in Nicotiana benthamiana and found differential structures in resistant and susceptible accessions. Susceptible accessions showed nuclear and membrane spots and many transvacuolar strands, whereas the resistant accessions showed many intravacuolar invaginations. These specific structures colocalized with late endosomes. Artificial CmVPS41 carrying individual mutations causing resistance in the genetic background of CmVPS41 from the susceptible variety Piel de Sapo (PS) revealed that the structure most correlated with resistance was the absence of transvacuolar strands. Coexpression of CmVPS41 with viral movement proteins, the determinant of virulence, did not change these localizations; however, infiltration of CmVPS41 from either SC or PS accessions in CMV-infected N. benthamiana leaves showed a localization pattern closer to each other, with up to 30% cells showing some membrane spots in the CmVPS41SC and fewer transvacuolar strands (reduced from a mean of 4 to 1-2) with CmVPS41PS. Our results suggest that the distribution of CmVPS41PS in late endosomes includes transvacuolar strands that facilitate CMV infection and that CmVPS41 re-localizes during viral infection.
Collapse
Affiliation(s)
- Núria Real
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Irene Villar
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Universidad de Zaragoza, Calle Pedro Cerbuna, 12, 50009 Zaragoza, Spain
| | - Irene Serrano
- Laboratoire des Interactions des Plantes et Microorganismes, CNRS, 31326 Toulouse, France
| | - Cèlia Guiu-Aragonés
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, C/Vall Moronta, Edifici CRAG, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, C/ Vall Moronta, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| |
Collapse
|
7
|
Agaoua A, Rittener V, Troadec C, Desbiez C, Bendahmane A, Moquet F, Dogimont C. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4008-4021. [PMID: 35394500 DOI: 10.1093/jxb/erac135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In plants, introgression of genetic resistance is a proven strategy for developing new resistant lines. While host proteins involved in genome replication and cell to cell movement are widely studied, other cell mechanisms responsible for virus infection remain under investigated. Endosomal sorting complexes required for transport (ESCRT) play a key role in membrane trafficking in plants and are involved in the replication of several plant RNA viruses. In this work, we describe the role of the ESCRT protein CmVPS4 as a new susceptibility factor to the Potyvirus Watermelon mosaic virus (WMV) in melon. Using a worldwide collection of melons, we identified three different alleles carrying non-synonymous substitutions in CmVps4. Two of these alleles were shown to be associated with WMV resistance. Using a complementation approach, we demonstrated that resistance is due to a single non-synonymous substitution in the allele CmVps4P30R. This work opens up new avenues of research on a new family of host factors required for virus infection and new targets for resistance.
Collapse
Affiliation(s)
- Aimeric Agaoua
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| | - Vincent Rittener
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| | - Christelle Troadec
- Institute of Plant Sciences-Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | | | | | | | - Catherine Dogimont
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| |
Collapse
|
8
|
Resistance to Cucumber Green Mottle Mosaic Virus in Cucumis melo. PLANTS 2021; 10:plants10061077. [PMID: 34071955 PMCID: PMC8227257 DOI: 10.3390/plants10061077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a severe threat to melon production worldwide. At present, there are no cultivars available on the market which show an effective resistance or tolerance to CGMMV infection; only wild Cucumis species were reported as resistant. Germplasm accessions of Cucumis melo, as well as C. anguria, C. ficifolius, C. myriocarpus and C. metuliferus, were mechanically infected with isolates belonging to the European and Asian strain of CGMMV and screened for resistance by scoring symptom severity and comparing the accumulation of virus by qRT-PCR. The wild species C. anguria and C. ficifolius showed no symptoms and did not accumulate CGGMV following inoculation, while C. metuliferus was highly susceptible to the isolates of both strains of CGMMV. The virus accumulated also in C. myriocarpus and the European isolate produced symptoms, but the Asian isolate did not. Thirty C. melo accessions were susceptible to CGMMV. An isolate-dependent expression of symptoms was observed in 16 melon accessions: they showed mild and severe symptoms at 14 and 21 days after inoculation with the European and Asian isolate, respectively. Freeman's Cucumber showed few or no symptoms following inoculation with the isolate of either CGMMV strain. This particular accession also showed reduced virus accumulation, whereas most other tested germplasm accessions showed significantly higher viral loads and, therefore, may well be a candidate for breeding programs aiming to reduce the losses produced by CGMMV with resistant commercial melon cultivars.
Collapse
|
9
|
Dubiella U, Serrano I. The Ubiquitin Proteasome System as a Double Agent in Plant-Virus Interactions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050928. [PMID: 34066628 PMCID: PMC8148538 DOI: 10.3390/plants10050928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 05/03/2023]
Abstract
The ubiquitin proteasome is a rapid, adaptive mechanism for selective protein degradation, crucial for proper plant growth and development. The ubiquitin proteasome system (UPS) has also been shown to be an integral part of plant responses to stresses, including plant defence against pathogens. Recently, significant progress has been made in the understanding of the involvement of the UPS in the signalling and regulation of the interaction between plants and viruses. This review aims to discuss the current knowledge about the response of plant viral infection by the UPS and how the viruses counteract this system, or even use it for their own benefit.
Collapse
Affiliation(s)
- Ullrich Dubiella
- KWS SAAT SE & Co. KGaA, Grimsehlstraße 31, 37574 Einbeck, Germany;
| | - Irene Serrano
- Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Correspondence:
| |
Collapse
|
10
|
Palukaitis P, Yoon JY. R gene mediated defense against viruses. Curr Opin Virol 2020; 45:1-7. [PMID: 32402925 DOI: 10.1016/j.coviro.2020.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
The relationship of Resistance (R) gene-mediated defense to other forms of resistance in plants is considered, and the natures of the products of dominant and recessive R genes are reviewed. Various factors involved in expressing R gene-mediated resistance are described. These include phytohormones and plant effector molecules: the former regulating different pathways for disease resistance and the latter having direct effects on viral genomes or encoded proteins. Finally, the status of our knowledge concerning the cell-death hypersensitive response and its relationship to the actual resistance response involved in inhibiting virus infection is examined.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea.
| | - Ju-Yeon Yoon
- Virology Unit, Horticultural and Herbal Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|