1
|
Mathieu L, Reder M, Siah A, Ducasse A, Langlands-Perry C, Marcel TC, Morel JB, Saintenac C, Ballini E. SeptoSympto: a precise image analysis of Septoria tritici blotch disease symptoms using deep learning methods on scanned images. PLANT METHODS 2024; 20:18. [PMID: 38297386 PMCID: PMC10832182 DOI: 10.1186/s13007-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Investigations on plant-pathogen interactions require quantitative, accurate, and rapid phenotyping of crop diseases. However, visual assessment of disease symptoms is preferred over available numerical tools due to transferability challenges. These assessments are laborious, time-consuming, require expertise, and are rater dependent. More recently, deep learning has produced interesting results for evaluating plant diseases. Nevertheless, it has yet to be used to quantify the severity of Septoria tritici blotch (STB) caused by Zymoseptoria tritici-a frequently occurring and damaging disease on wheat crops. RESULTS We developed an image analysis script in Python, called SeptoSympto. This script uses deep learning models based on the U-Net and YOLO architectures to quantify necrosis and pycnidia on detached, flattened and scanned leaves of wheat seedlings. Datasets of different sizes (containing 50, 100, 200, and 300 leaves) were annotated to train Convolutional Neural Networks models. Five different datasets were tested to develop a robust tool for the accurate analysis of STB symptoms and facilitate its transferability. The results show that (i) the amount of annotated data does not influence the performances of models, (ii) the outputs of SeptoSympto are highly correlated with those of the experts, with a similar magnitude to the correlations between experts, and (iii) the accuracy of SeptoSympto allows precise and rapid quantification of necrosis and pycnidia on both durum and bread wheat leaves inoculated with different strains of the pathogen, scanned with different scanners and grown under different conditions. CONCLUSIONS SeptoSympto takes the same amount of time as a visual assessment to evaluate STB symptoms. However, unlike visual assessments, it allows for data to be stored and evaluated by experts and non-experts in a more accurate and unbiased manner. The methods used in SeptoSympto make it a transferable, highly accurate, computationally inexpensive, easy-to-use, and adaptable tool. This study demonstrates the potential of using deep learning to assess complex plant disease symptoms such as STB.
Collapse
Affiliation(s)
- Laura Mathieu
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| | - Maxime Reder
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ali Siah
- BioEcoAgro, Junia, Lille University, Liège University, UPJV, Artois University, ULCO, INRAE, Lille, France
| | - Aurélie Ducasse
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | | | - Jean-Benoît Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | | | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, IRD, Institut Agro, Montpellier, France.
| |
Collapse
|
2
|
Carlier A, Dandrifosse S, Dumont B, Mercatoris B. To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status? PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0083. [PMID: 37681000 PMCID: PMC10482323 DOI: 10.34133/plantphenomics.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
The utilization of high-throughput in-field phenotyping systems presents new opportunities for evaluating crop stress. However, existing studies have primarily focused on individual stresses, overlooking the fact that crops in field conditions frequently encounter multiple stresses, which can display similar symptoms or interfere with the detection of other stress factors. Therefore, this study aimed to investigate the impact of wheat yellow rust on reflectance measurements and nitrogen status assessment. A multi-sensor mobile platform was utilized to capture RGB and multispectral images throughout a 2-year fertilization-fungicide trial. To identify disease-induced damage, the SegVeg approach, which combines a U-NET architecture and a pixel-wise classifier, was applied to RGB images, generating a mask capable of distinguishing between healthy and damaged areas of the leaves. The observed proportion of damage in the images demonstrated similar effectiveness to visual scoring methods in explaining grain yield. Furthermore, the study discovered that the disease not only affected reflectance through leaf damage but also influenced the reflectance of healthy areas by disrupting the overall nitrogen status of the plants. This emphasizes the importance of incorporating disease impact into reflectance-based decision support tools to account for its effects on spectral data. This effect was successfully mitigated by employing the NDRE vegetation index calculated exclusively from the healthy portions of the leaves or by incorporating the proportion of damage into the model. However, these findings also highlight the necessity for further research specifically addressing the challenges presented by multiple stresses in crop phenotyping.
Collapse
Affiliation(s)
- Alexis Carlier
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Sebastien Dandrifosse
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Benjamin Dumont
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech,
University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Anderegg J, Zenkl R, Walter A, Hund A, McDonald BA. Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0053. [PMID: 37363146 PMCID: PMC10287056 DOI: 10.34133/plantphenomics.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Maintenance of sufficiently healthy green leaf area after anthesis is key to ensuring an adequate assimilate supply for grain filling. Tightly regulated age-related physiological senescence and various biotic and abiotic stressors drive overall greenness decay dynamics under field conditions. Besides direct effects on green leaf area in terms of leaf damage, stressors often anticipate or accelerate physiological senescence, which may multiply their negative impact on grain filling. Here, we present an image processing methodology that enables the monitoring of chlorosis and necrosis separately for ears and shoots (stems + leaves) based on deep learning models for semantic segmentation and color properties of vegetation. A vegetation segmentation model was trained using semisynthetic training data generated using image composition and generative adversarial neural networks, which greatly reduced the risk of annotation uncertainties and annotation effort. Application of the models to image time series revealed temporal patterns of greenness decay as well as the relative contributions of chlorosis and necrosis. Image-based estimation of greenness decay dynamics was highly correlated with scoring-based estimations (r ≈ 0.9). Contrasting patterns were observed for plots with different levels of foliar diseases, particularly septoria tritici blotch. Our results suggest that tracking the chlorotic and necrotic fractions separately may enable (a) a separate quantification of the contribution of biotic stress and physiological senescence on overall green leaf area dynamics and (b) investigation of interactions between biotic stress and physiological senescence. The high-throughput nature of our methodology paves the way to conducting genetic studies of disease resistance and tolerance.
Collapse
Affiliation(s)
- Jonas Anderegg
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Radek Zenkl
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Achim Walter
- Crop Science Group, Institute of Agricultural Sciences,
ETH Zurich, Zurich, Switzerland
| | - Andreas Hund
- Crop Science Group, Institute of Agricultural Sciences,
ETH Zurich, Zurich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Dandrifosse S, Carlier A, Dumont B, Mercatoris B. In-Field Wheat Reflectance: How to Reach the Organ Scale? SENSORS (BASEL, SWITZERLAND) 2022; 22:3342. [PMID: 35591041 PMCID: PMC9101491 DOI: 10.3390/s22093342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The reflectance of wheat crops provides information on their architecture or physiology. However, the methods currently used for close-range reflectance computation do not allow for the separation of the wheat canopy organs: the leaves and the ears. This study details a method to achieve high-throughput measurements of wheat reflectance at the organ scale. A nadir multispectral camera array and an incident light spectrometer were used to compute bi-directional reflectance factor (BRF) maps. Image thresholding and deep learning ear detection allowed for the segmentation of the ears and the leaves in the maps. The results showed that the BRF measured on reference targets was constant throughout the day but varied with the acquisition date. The wheat organ BRF was constant throughout the day in very cloudy conditions and with high sun altitudes but showed gradual variations in the morning under sunny or partially cloudy sky. As a consequence, measurements should be performed close to solar noon and the reference panel should be captured at the beginning and end of each field trip to correct the BRF. The method, with such precautions, was tested all throughout the wheat growing season on two varieties and various canopy architectures generated by a fertilization gradient. The method yielded consistent reflectance dynamics in all scenarios.
Collapse
Affiliation(s)
- Sébastien Dandrifosse
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (A.C.); (B.M.)
| | - Alexis Carlier
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (A.C.); (B.M.)
| | - Benjamin Dumont
- Plant Sciences, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Benoît Mercatoris
- Biosystems Dynamics and Exchanges, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (A.C.); (B.M.)
| |
Collapse
|
5
|
Koc A, Odilbekov F, Alamrani M, Henriksson T, Chawade A. Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning. PLANT METHODS 2022; 18:30. [PMID: 35292072 PMCID: PMC8922805 DOI: 10.1186/s13007-022-00868-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/06/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND High-throughput plant phenotyping (HTPP) methods have the potential to speed up the crop breeding process through the development of cost-effective, rapid and scalable phenotyping methods amenable to automation. Crop disease resistance breeding stands to benefit from successful implementation of HTPP methods, as bypassing the bottleneck posed by traditional visual phenotyping of disease, enables the screening of larger and more diverse populations for novel sources of resistance. The aim of this study was to use HTPP data obtained through proximal phenotyping to predict yellow rust scores in a large winter wheat field trial. RESULTS The results show that 40-42 spectral vegetation indices (SVIs) derived from spectroradiometer data are sufficient to predict yellow rust scores using Random Forest (RF) modelling. The SVIs were selected through RF-based recursive feature elimination (RFE), and the predicted scores in the resulting models had a prediction accuracy of rs = 0.50-0.61 when measuring the correlation between predicted and observed scores. Some of the most important spectral features for prediction were the Plant Senescence Reflectance Index (PSRI), Photochemical Reflectance Index (PRI), Red-Green Pigment Index (RGI), and Greenness Index (GI). CONCLUSIONS The proposed HTPP method of combining SVI data from spectral sensors in RF models, has the potential to be deployed in wheat breeding trials to score yellow rust.
Collapse
Affiliation(s)
- Alexander Koc
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22, Lomma, Sweden
| | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22, Lomma, Sweden
- Lantmännen Lantbruk, SE-268 81, Svalöv, Sweden
| | - Marwan Alamrani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22, Lomma, Sweden
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22, Lomma, Sweden.
| |
Collapse
|
6
|
Sarić R, Nguyen VD, Burge T, Berkowitz O, Trtílek M, Whelan J, Lewsey MG, Čustović E. Applications of hyperspectral imaging in plant phenotyping. TRENDS IN PLANT SCIENCE 2022; 27:301-315. [PMID: 34998690 DOI: 10.1016/j.tplants.2021.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Our ability to interrogate and manipulate the genome far exceeds our capacity to measure the effects of genetic changes on plant traits. Much effort has been made recently by the plant science research community to address this imbalance. The responses of plants to environmental conditions can now be defined using a variety of imaging approaches. Hyperspectral imaging (HSI) has emerged as a promising approach to measure traits using a wide range of wavebands simultaneously in 3D to capture information in lab, glasshouse, or field settings. HSI has been applied to define abiotic, biotic, and quality traits for optimisation of crop management.
Collapse
Affiliation(s)
- Rijad Sarić
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Department of Engineering, School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Viet D Nguyen
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Department of Engineering, School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Timothy Burge
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Martin Trtílek
- Photon Systems Instruments plant phenotyping research centre, Photon System Instruments, 664 24 Drasov, Brno, Czech Republic
| | - James Whelan
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Edhem Čustović
- Department of Engineering, School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
7
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
8
|
Gao J, Westergaard JC, Sundmark EHR, Bagge M, Liljeroth E, Alexandersson E. Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106723] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Deery DM, Jones HG. Field Phenomics: Will It Enable Crop Improvement? PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:9871989. [PMID: 34549194 PMCID: PMC8433881 DOI: 10.34133/2021/9871989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/14/2021] [Indexed: 05/19/2023]
Abstract
Field phenomics has been identified as a promising enabling technology to assist plant breeders with the development of improved cultivars for farmers. Yet, despite much investment, there are few examples demonstrating the application of phenomics within a plant breeding program. We review recent progress in field phenomics and highlight the importance of targeting breeders' needs, rather than perceived technology needs, through developing and enhancing partnerships between phenomics researchers and plant breeders.
Collapse
Affiliation(s)
| | - Hamlyn G. Jones
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Division of Plant Sciences, University of Dundee, UK
- School of Agriculture and Environment, University of Western Australia, Australia
| |
Collapse
|