1
|
Dai JH, Van Do T, Liu Y. Four new species of Perilimnastes (Sonerileae, Melastomataceae) from Vietnam. PHYTOKEYS 2023; 235:1-19. [PMID: 37969746 PMCID: PMC10638611 DOI: 10.3897/phytokeys.235.112133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Perilimnastes is a genus currently treated in the polyphyletic Phyllagathis. Recent phylogenomic analyses have identified a morphologically cohesive lineage referred to as the Phyllagathis (raphides) clade, which should be excluded from Phyllagathis and treated as a distinct genus under the name Perilimnastes. Morphological and phylogenomic data have confirmed that four new species collected from Vietnam are part of the Phyllagathis (raphides) clade. They are described herein as Perilimnastesmultisepala, P.setipetiola, P.uniflora, and P.banaensis. Perilimnastesmultisepala is phylogenetically closest to Phyllagathissetotheca, and morphologically to P.fruticosa and P.stenophylla, but is distinct in the 4- to 8-lobed calyx, 28 × 9 mm, apically long acuminate petals, and 1-2 mm pedicel at fruiting stage. Perilimnastessetipetiola, P.uniflora, and P.banaensis are phylogenetically most closely related. Perilimnastesuniflora is characterized by its prostrate habit, small size, glabrous, obovate to obovate-lanceolate leaf blade, and solitary flower. Perilimnastessetipetiola and P.banaensis resemble each other in habit, leaf size and shape, and sessile or near sessile inflorescences but can be easily distinguished by the indumentum of the stems and leaves.
Collapse
Affiliation(s)
- Jin-Hong Dai
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Truong Van Do
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, China
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18th Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ying Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Castro AA, Nunes R, Carvalho LR, Targueta CP, Dos Santos Braga-Ferreira R, de Melo-Ximenes AA, Corvalán LCJ, Bertoni BW, Pereira AMS, de Campos Telles MP. Chloroplast genome characterization of Uncaria guianensis and Uncaria tomentosa and evolutive dynamics of the Cinchonoideae subfamily. Sci Rep 2023; 13:8390. [PMID: 37225737 DOI: 10.1038/s41598-023-34334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Uncaria species are used in traditional medicine and are considered of high therapeutic value and economic importance. This work describes the assembly and annotation of the chloroplast genomes of U. guianensis and U. tomentosa, as well as a comparative analysis. The genomes were sequenced on MiSeq Illumina, assembled with NovoPlasty, and annotated using CHLOROBOX GeSeq. Addictionaly, comparative analysis were performed with six species from NCBI databases and primers were designed in Primer3 for hypervariable regions based on the consensus sequence of 16 species of the Rubiaceae family and validated on an in-silico PCR in OpenPrimeR. The genome size of U. guianensis and U. tomentosa was 155,505 bp and 156,390 bp, respectively. Both Species have 131 genes and GC content of 37.50%. The regions rpl32-ccsA, ycf1, and ndhF-ccsA showed the three highest values of nucleotide diversity within the species of the Rubiaceae family and within the Uncaria genus, these regions were trnH-psbA, psbM-trnY, and rps16-psbK. Our results indicates that the primer of the region ndhA had an amplification success for all species tested and can be promising for usage in the Rubiaceae family. The phylogenetic analysis recovered a congruent topology to APG IV. The gene content and the chloroplast genome structure of the analyzed species are conserved and most of the genes are under negative selection. We provide the cpDNA of Neotropical Uncaria species, an important genomic resource for evolutionary studies of the group.
Collapse
Affiliation(s)
- Andrezza Arantes Castro
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil.
- Instituto Federal de Goiás - Campus Cidade de Goiás (IFG), Goiás, GO, 74600-000, Brazil.
| | - Larissa Resende Carvalho
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Cíntia Pelegrineti Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Ramilla Dos Santos Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Amanda Alves de Melo-Ximenes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Leonardo Carlos Jeronimo Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | | | | | - Mariana Pires de Campos Telles
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC - GO), Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
3
|
Li CJ, Xie XT, Liu HX, Wang RN, Li DZ. Plastome evolution in the East Asian lobelias (Lobelioideae) using phylogenomic and comparative analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1144406. [PMID: 37063184 PMCID: PMC10102522 DOI: 10.3389/fpls.2023.1144406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Lobelia species, as rich source of the alkaloid lobeline which has been shown to have important biological activity, have been used in folk medicine throughout East Asia to treat various diseases. However, Lobelia is a complex and varied genus in East Asia and is thus difficult to identify. Genomic resources would aid identification, however the availability of such information is poor, preventing a clear understanding of their evolutionary history from being established. To close this gap in the available genomic data, in this study, 17 plastomes of East Asian lobelias were newly sequenced and assembled. Although the plastomes of Lobelia sect. Hypsela, L. sect. Speirema, and L. sect. Rhynchopetalum shared the gene structure, the inverted repeat (IR)/large single copy (LSC) boundaries, genome size, and the number of repeats were variable, indicating the non-conservative nature of plastome evolution within these sections. However, the genomes of the Lobelia sect. Delostemon and L. sect. Stenotium showed rearrangements, revealing that these two sections might have undergone different evolutionary histories. We assessed nine hotspot genes and 27-51 simple sequence repeat motifs, which will also serve as valuable DNA barcode regions in future population genetics studies and for the delineation of plant species. Our phylogenetic analysis resolved the evolutionary positions of the five sections in agreement with previous evolutionary trees based on morphological features. Although phylogenetic reconstruction of Lobelioideae based on the rpoC2 gene has rarely been performed, our results indicated that it contains a considerable amount of phylogenetic information and offers great promise for further phylogenetic analysis of Lobelioideae. Our site-specific model identified 173 sites under highly positive selections. The branch-site model exhibited 11 positive selection sites involving four genes in the East Asian branches. These four genes may play critical roles in the adaptation of East Asian taxa to diverse environments. Our study is the first to detect plastome organization, phylogenetic utility, and signatures of positive selection in the plastomes of East Asian lobelias, which will help to further advance taxonomic and evolutionary studies and the utilization of medicinal plant resources.
Collapse
Affiliation(s)
- Chun-Jiao Li
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin-Tong Xie
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning, China
| | - Hong-Xin Liu
- College of Life Science, Shenyang Normal University, Shenyang, Liaoning, China
| | - Ruo-Nan Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
4
|
Zhang L, Huang YW, Huang JL, Ya JD, Zhe MQ, Zeng CX, Zhang ZR, Zhang SB, Li DZ, Li HT, Yang JB. DNA barcoding of Cymbidium by genome skimming: Call for next-generation nuclear barcodes. Mol Ecol Resour 2023; 23:424-439. [PMID: 36219539 DOI: 10.1111/1755-0998.13719] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
Cymbidium is an orchid genus that has undergone rapid radiation and has high ornamental, economic, ecological and cultural importance, but its classification based on morphology is controversial. The plastid genome (plastome), as an extension of plant standard DNA barcodes, has been widely used as a potential molecular marker for identifying recently diverged species or complicated plant groups. In this study, we newly generated 237 plastomes of 50 species (at least two individuals per species) by genome skimming, covering 71.4% of members of the genus Cymbidium. Sequence-based analyses (barcoding gaps and automatic barcode gap discovery) and tree-based analyses (maximum likelihood, Bayesian inference and multirate Poisson tree processes model) were conducted for species identification of Cymbidium. Our work provides a comprehensive DNA barcode reference library for Cymbidium species identification. The results show that compared with standard DNA barcodes (rbcL + matK) as well as the plastid trnH-psbA, the species identification rate of the plastome increased moderately from 58% to 68%. At the same time, we propose an optimized identification strategy for Cymbidium species. The plastome cannot completely resolve the species identification of Cymbidium, the main reasons being incomplete lineage sorting, artificial cultivation, natural hybridization and chloroplast capture. To further explore the potential use of nuclear data in identifying species, the Skmer method was adopted and the identification rate increased to 72%. It appears that nuclear genome data have a vital role in species identification and are expected to be used as next-generation nuclear barcodes.
Collapse
Affiliation(s)
- Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yi-Wei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Meng-Qing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chun-Xia Zeng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
5
|
Out of chaos: Phylogenomics of Asian Sonerileae. Mol Phylogenet Evol 2022; 175:107581. [PMID: 35810973 DOI: 10.1016/j.ympev.2022.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Sonerileae is a diverse Melastomataceae lineage comprising ca. 1000 species in 44 genera, with >70% of genera and species distributed in Asia. Asian Sonerileae are taxonomically intractable with obscure generic circumscriptions. The backbone phylogeny of this group remains poorly resolved, possibly due to complexity caused by rapid species radiation in early and middle Miocene, which hampers further systematic study. Here, we used genome resequencing data to reconstruct the phylogeny of Asian Sonerileae. Three parallel datasets, viz. single-copy ortholog (SCO), genomic SNPs, and whole plastome, were assembled from genome resequencing data of 205 species for this purpose. Based on these genome-scale data, we provided the first well resolved phylogeny of Asian Sonerileae, with 34 major clades identified and 74% of the interclade relationships consistently resolved by both SCO and genomic data. Meanwhile, widespread phylogenetic discordance was detected among SCO gene trees as well as species trees reconstructed using different tree estimation methods (concatenation/site-based coalescent method/summary method) or different datasets (SCO/genomic/plastome). We explored sources of discordance using multiple approaches and found that the observed discordance in Asian Sonerileae was mainly caused by a combination of biased distribution of missing data, random noise from uninformative genes, incomplete lineage sorting, and hybridization/introgression. Exploration of these sources can enable us to generate hypotheses for future testing, which is the first step towards understanding the evolution of Asian Sonerileae. We also detected high levels of homoplasy for some characters traditionally used in taxonomy, which explains current chaotic generic delimitations. The backbone phylogeny of Asian Sonerileae revealed in this study offers a solid basis for future taxonomic revision at the generic level.
Collapse
|
6
|
Zeng SJ, Tong YH, Xia NH. Fordiophytontereticaule (Melastomataceae), a new species from China. PHYTOKEYS 2022; 197:59-69. [PMID: 36760677 PMCID: PMC9849035 DOI: 10.3897/phytokeys.197.82670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 06/18/2023]
Abstract
A new species, Fordiophytontereticaule, from China, is described and illustrated here based on morphological and molecular evidence. It is morphologically similar to F.faberi in having erect stems, slightly oblique and membranous leaf blades, broadly ovate to suborbicular bracts, and oblong petals, but differs by the terete stems, densely puberulous petioles, and elliptic leaf blades. Our phylogenetic analyses based on plastid genome and nrITS data indicate that this new species is clustered with four Fordiophyton species of Yunnan but placed far apart from F.faberi. An updated key to the genus is also provided.
Collapse
Affiliation(s)
- Si-Jin Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, ChinaCore Botanical Gardens, Chinese Academy of SciencesGuangzhouChina
| | - Yi-Hua Tong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, ChinaCore Botanical Gardens, Chinese Academy of SciencesGuangzhouChina
| | - Nian-He Xia
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, ChinaCore Botanical Gardens, Chinese Academy of SciencesGuangzhouChina
| |
Collapse
|
7
|
Dai JH, Nong SY, Guo XB, Do TV, Liu Y, Zhou RC, Liu Y. Three new species of Bredia (Sonerileae, Melastomataceae) from the Sino-Vietnamese border area. PHYTOKEYS 2022; 195:107-125. [PMID: 36761360 PMCID: PMC9848902 DOI: 10.3897/phytokeys.195.83934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/18/2023]
Abstract
Brediabullata, B.enchengensis, and B.nitida (Sonerileae, Melastomataceae), three species occurring in Sino-Vietnamese limestone karst regions, are described as new. Molecular phylogenetic analyses and morphological divergence indicate that these species are well separated from their close relatives in Bredia, justifying their recognition as distinct species. Brediabullata is unique in its interveinal areas prominently bullate each with an apical seta, a character otherwise never recorded in the genus. Bredianitida resembles B.malipoensis in habit, leaf shape, and inflorescence morphology, but differs in the glabrescent and nitid adaxial leaf surface (vs. densely pubescent and subvelvety), ovate-elliptic or elliptic calyx lobes (vs. triangular to semiorbicular), and white petals (vs. purplish-red). Brediaenchengensis is closest to B.longiradiosa, but easily recognized by its prostrate habit (vs. erect), the yellowish-green, membranous and fragile leaves (vs. green or dark green, papery), and white anthers (vs. pink to purplish). These new discoveries show that further botanical exploration is warranted in the remote Sino-Vietnamese bordering region.
Collapse
Affiliation(s)
- Jin-Hong Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, China
| | - Shi-Yue Nong
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Xi-Bin Guo
- Malipo Laoshan Provincial Natural Reserve, Malipo 663600, China
| | - Truong Van Do
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18
- th
| | - Yan Liu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin 541006, China
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, China
| |
Collapse
|
8
|
Maurin O, Anest A, Bellot S, Biffin E, Brewer G, Charles-Dominique T, Cowan RS, Dodsworth S, Epitawalage N, Gallego B, Giaretta A, Goldenberg R, Gonçalves DJP, Graham S, Hoch P, Mazine F, Low YW, McGinnie C, Michelangeli FA, Morris S, Penneys DS, Pérez Escobar OA, Pillon Y, Pokorny L, Shimizu G, Staggemeier VG, Thornhill AH, Tomlinson KW, Turner IM, Vasconcelos T, Wilson PG, Zuntini AR, Baker WJ, Forest F, Lucas E. A nuclear phylogenomic study of the angiosperm order Myrtales, exploring the potential and limitations of the universal Angiosperms353 probe set. AMERICAN JOURNAL OF BOTANY 2021; 108:1087-1111. [PMID: 34297852 DOI: 10.1002/ajb2.1699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
PREMISE To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.
Collapse
Affiliation(s)
- Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Artemis Anest
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sidonie Bellot
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Edward Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, PO Box 1047, Adelaide, South Australia, 5001, Australia
| | - Grace Brewer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Tristan Charles-Dominique
- Centre National de la Recherche Scientifique (CNRS), Sorbonne University, 4 Place Jussieu, Paris, 75005, France
| | - Robyn S Cowan
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, University Square, Luton, LU1 3JU, UK
| | | | - Berta Gallego
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Augusto Giaretta
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados - UFGD, Dourados, MS, Brazil
| | - Renato Goldenberg
- Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Peter Hoch
- Missouri Botanical Garden, St. Louis, MO, 63110, USA
| | - Fiorella Mazine
- Departamento de Ciências Ambientais, Centro de Ciências e Tecnologias para a Sustentabilidade, Universidade Federal de São Carlos - campus Sorocaba, Sorocaba, SP, 18052-780, Brazil
| | - Yee Wen Low
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | | | - Fabián A Michelangeli
- Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY, 10458-5126, USA
| | - Sarah Morris
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Darin S Penneys
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | | | - Yohan Pillon
- LSTM, IRD, INRAE, CIRAD, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Centre for Plant Biotechnology and Genomics (CBGP UPM - INIA), Autopista M-40, Km 38, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Gustavo Shimizu
- Department of Plant Biology, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Vanessa G Staggemeier
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Andrew H Thornhill
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- State Herbarium of South Australia, PO Box 1047, Adelaide, South Australia, 5001, Australia
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Ian M Turner
- Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore
- Singapore Botanical Liaison Officer, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Peter G Wilson
- Royal Botanic Gardens Sydney, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | | | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Eve Lucas
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
9
|
Zeng SJ, Xu YC, Wang GT, Jia P, Cui DF. Tigridiopalma exalata, a new and endangered species of Melastomataceae from China. PHYTOKEYS 2021; 176:33-42. [PMID: 33958937 PMCID: PMC8065001 DOI: 10.3897/phytokeys.176.63619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
A new species of the genus Tigridiopalma, formerly considered monotypic, is here described as T. exalata and illustrated based on molecular and morphological evidence. It is morphologically similar to T. magnifica in having a short stem, huge basal leaves, scorpioid cymes, and 5-merous flowers, but differs in having ribbed and pale yellow puberulent petioles, purple petals with a small white apical patch, connectives of longer stamens with a distinct dorsal short spur at their base, and wingless capsules. Due to the restricted distribution, small populations and horticultural potential of this new species, it should be categorized as an Endangered species (EN).
Collapse
Affiliation(s)
- Si-Jin Zeng
- College of Forestry and Landscape Architecture/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Ye-Chun Xu
- Environmental Horticulture Research Institute/Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Gang-Tao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Jia
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510420, Guangdong, China
| | - Da-Fang Cui
- College of Forestry and Landscape Architecture/Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
10
|
Dai JH, Zhou QJ, Zhou RC, Liu Y. A new species of Bredia (Sonerileae, Melastomataceae) from Sichuan, China. PHYTOKEYS 2020; 152:1-14. [PMID: 32714011 PMCID: PMC7351796 DOI: 10.3897/phytokeys.152.53512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Bredia hispida (Sonerileae, Melastomataceae), a species occurring in southeastern Sichuan, China, is newly described based on morphological and molecular data. The generic placement of B. hispida is well supported by phylogenetic analysis and morphological characters, including basally cordate, hairy leaf blade, cymose inflorescence, basally gibbous anthers and enlarged ovary crown enclosing an inverted frustum-shaped depression. Both molecular and morphological divergence showed that B. hispida is well separated from its close relatives, justifying its recognition as a distinct species. The new species resembles B. repens, B. changii and B. guidongensis in the prostrate habit and isomorphic stamens but differs markedly in the unequal opposed leaves, the 2-4 mm long, stout bristles on the adaxial surface of leaf blade and acuminate leaf apex. Bredia hispida co-occurs with B. esquirolii in the wild. No morphologically putative hybrids between them were observed despite their overlap in flowering season. The isolating mechanism remains unclear, pending further investigation.
Collapse
Affiliation(s)
- Jin-Hong Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, ChinaSun Yat-sen UniversityGuangzhouChina
| | - Qiu-Jie Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, ChinaSun Yat-sen UniversityGuangzhouChina
| | - Ren-Chao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, ChinaSun Yat-sen UniversityGuangzhouChina
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, ChinaSun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Zhou S, Ni S, Dai J, Zhou Q, Zhou R, Liu Y. Natural hybridization between Phyllagathis and Sporoxeia species produces a hybrid without reproductive organs. PLoS One 2020; 15:e0227625. [PMID: 31914145 PMCID: PMC6949006 DOI: 10.1371/journal.pone.0227625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/22/2019] [Indexed: 01/05/2023] Open
Abstract
Natural hybridization plays important roles in plant evolution and speciation. In this study, we sequenced ribosomal internal transcribed spacer (nrITS), four low-copy nuclear genes (Dbr1, SOS4a, SOS4b and PCRF1) and the chloroplast intergenic spacer trnV-trnM to test the hypothesis of hybridization between two species of Phyllagathis and Sporoxeia (Sonerileae/Dissochaeteae, Melastomataceae). Our results provided compelling evidence for the hybridization hypothesis. All hybrid individuals sampled were first-generation hybrids. The failure of flower production in the F1 hybrid individuals may work as the barrier preventing later-generation hybridization or backcross. Analysis of the chloroplast trnV-trnM sequences showed that the hybridization is bidirectional with S. petelotii as the major maternal parent. Several factors, such as sympatry, similar habitat preference, overlapping flowering season and shared pollinators, might have contributed to this hybridization event. The "intergeneric" hybridization reported in this study suggests close relationship between P. longicalcarata and S. petelotii.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuheng Ni
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinhong Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (RZ); (YL)
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (RZ); (YL)
| |
Collapse
|