1
|
Pichaiyotinkul P, Leksingto J, Sukkasam N, In-Na P, Incharoensakdi A, Monshupanee T. Erythromycin mediates co-flocculation between cyanobacterium Synechocystis sp. PCC 6803 and filamentous fungi in liquid cultivation without organic compounds. Sci Rep 2024; 14:9640. [PMID: 38671026 PMCID: PMC11053131 DOI: 10.1038/s41598-024-60016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2% biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi protected Synechocystis against the development of chlorosis. Transcriptomic analysis suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The CuSO4 stress can also mediate Synechocystis-fungi flocculation but at a lower flocculation efficiency than that caused by EM. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.
Collapse
Affiliation(s)
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pichaya In-Na
- Research Unit on Sustainable Algal Cultivation and Applications, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Unit on Sustainable Algal Cultivation and Applications, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Liu S, Feng J, Sun T, Xu B, Zhang J, Li G, Zhou J, Jiang J. The Synthesis and Assembly of a Truncated Cyanophage Genome and Its Expression in a Heterogenous Host. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081234. [PMID: 36013413 PMCID: PMC9410186 DOI: 10.3390/life12081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Cyanophages play an important role in regulating the dynamics of cyanobacteria communities in the hydrosphere, representing a promising biological control strategy for cyanobacterial blooms. Nevertheless, most cyanophages are host-specific, making it difficult to control blooming cyanobacteria via single or multiple cyanophages. In order to address the issue, we explore the interaction between cyanophages and their heterologous hosts, with the aim of revealing the principles of designing and constructing an artificial cyanophage genome towards multiple cyanobacterial hosts. In the present study, we use synthetic biological approaches to assess the impact of introducing a fragment of cyanophage genome into a heterologous cyanobacterium under a variety of environmental conditions. Based on a natural cyanophage A-4L genome (41,750 bp), a truncated cyanophage genome Syn-A-4-8 is synthesized and assembled in Saccharomyces cerevisiae. We found that a 351-15,930 bp area of the A-4L genome has a fragment that is lethal to Escherichia coli during the process of attempting to assemble the full-length A-4L genome. Syn-A-4-8 was successfully introduced into E. coli and then transferred into the model cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942) via conjugation. Although no significant phenotypes of Syn7942 carrying Syn-A-4-8 (LS-02) could be observed under normal conditions, its growth exhibited a prolonged lag phase compared to that of the control strain under 290-millimolar NaCl stress. Finally, the mechanisms of altered salt tolerance in LS-02 were revealed through comparative transcriptomics, and ORF25 and ORF26 on Syn-A-4-8 turned out to be the key genes causing the phenotype. Our research represents an important attempt in designing artificial cyanophages towards multiple hosts, and offers new future insights into the control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Shujing Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jia Feng
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Tao Sun
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Bonan Xu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiabao Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guorui Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jianting Zhou
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence: (J.Z.); (J.J.)
| | - Jianlan Jiang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence: (J.Z.); (J.J.)
| |
Collapse
|
3
|
Suban S, Sendersky E, Golden SS, Schwarz R. Impairment of a cyanobacterial glycosyltransferase that modifies a pilin results in biofilm development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:218-229. [PMID: 35172394 PMCID: PMC9306852 DOI: 10.1111/1758-2229.13050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/03/2022] [Indexed: 05/03/2023]
Abstract
A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homologue, Ogt, participates in the inhibitory process - inactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild-type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild-type; therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt-mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.
Collapse
Affiliation(s)
- Shiran Suban
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| | - Susan S. Golden
- Division of Biological SciencesUniversity of California, San DiegoLa JollaCA92093USA
- Center for Circadian BiologyUniversity of California, San DiegoLa JollaCA92093USA
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐Gan5290002Israel
| |
Collapse
|
4
|
Llontop EE, Cenens W, Favaro DC, Sgro GG, Salinas RK, Guzzo CR, Farah CS. The PilB-PilZ-FimX regulatory complex of the Type IV pilus from Xanthomonas citri. PLoS Pathog 2021; 17:e1009808. [PMID: 34398935 PMCID: PMC8389850 DOI: 10.1371/journal.ppat.1009808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/26/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.
Collapse
Affiliation(s)
- Edgar E. Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Denize C. Favaro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Química Orgânica, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane R. Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Hik36-Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803. Sci Rep 2020; 10:19405. [PMID: 33173131 PMCID: PMC7656254 DOI: 10.1038/s41598-020-76264-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
In response to environmental stress the model cyanobacterium, Synechocystis sp. PCC6803 can switch from a planktonic state to autoaggregation and biofilm formation. The precise mechanism of this transition remains unknown. Here we investigated the role of a candidate two-component regulatory system (TCS) in controlling morphological changes, as a way to understand the intermediate molecular steps that are part of the signaling pathway. A bacterial two-hybrid assay showed that the response regulator Rre6 formed a TCS together with a split histidine kinase consisting of Hik36 and Hik43. Individual disruption mutants displayed autoaggregation in a static culture. In contrast, unlike in the wild type, high salinity did not induce biofilm formation in Δhik36, Δhik43 and Δrre6. The expression levels of exopolysaccharide (EPS) production genes were higher in Δhik36 and Δhik43, compared with the wild type, but lower in Δrre6, suggesting that the TCS regulated EPS production in Synechocystis. Rre6 interacted physically with the motor protein PilT2, that is a component of the type IV pilus system. This interaction was enhanced in a phosphomimic version of Rre6. Taken together, Hik36-Hik43-Rre6 function as an upstream component of the pili-related signal transduction cascade and control the prevention of cell adhesion and biofilm formation.
Collapse
|
6
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
7
|
Comparative Proteomic Profiling of Marine and Freshwater Synechocystis Strains Using Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Freshwater Synechocystis sp. PCC 6803 has been considered to be a platform for the production of the next generation of biofuels and is used as a model organism in various fields. Various genomics, transcriptomics, metabolomics, and proteomics studies have been performed on this strain, whereas marine Synechocystis sp. PCC 7338 has not been widely studied despite its wide distribution. This study analyzed the proteome profiles of two Synechocystis strains using a liquid chromatography–tandem mass spectrometry-based bottom-up proteomic approach. Proteomic profiling of Synechocystis sp. PCC 7338 was performed for the first time with a data-dependent acquisition method, revealing 18,779 unique peptides and 1794 protein groups. A data-independent acquisition method was carried out for the comparative quantitation of Synechocystis sp. PCC 6803 and 7338. Among 2049 quantified proteins, 185 up- and 211 down-regulated proteins were defined in Synechocystis sp. PCC 7338. Some characteristics in the proteome of Synechocystis sp. PCC 7338 were revealed, such as its adaptation to living conditions, including the down-regulation of some photosynthesis proteins, the up-regulation of kdpB, and the use of osmolyte glycine as a substrate in C1 metabolism for the regulation of carbon flow. This study will facilitate further studies on Synechocystis 7338 to define in depth the proteomic differences between it and other Synechocystis strains.
Collapse
|
8
|
Russo DA, Zedler JAZ. Genomic insights into cyanobacterial protein translocation systems. Biol Chem 2020; 402:39-54. [PMID: 33544489 DOI: 10.1515/hsz-2020-0247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are ubiquitous oxygenic photosynthetic bacteria with a versatile metabolism that is highly dependent on effective protein targeting. Protein sorting in diderm bacteria is not trivial and, in cyanobacteria, even less so due to the presence of a complex membrane system: the outer membrane, the plasma membrane and the thylakoid membrane. In cyanobacteria, protein import into the thylakoids is essential for photosynthesis, export to the periplasm fulfills a multifunctional role in maintaining cell homeostasis, and secretion mediates motility, DNA uptake and environmental interactions. Intriguingly, only one set of genes for the general secretory and the twin-arginine translocation pathways seem to be present. However, these systems have to operate in both plasma and thylakoid membranes. This raises the question of how substrates are recognized and targeted to their correct, final destination. Additional complexities arise when a protein has to be secreted across the outer membrane, where very little is known regarding the mechanisms involved. Given their ecological importance and biotechnological interest, a better understanding of protein targeting in cyanobacteria is of great value. This review will provide insights into the known knowns of protein targeting, propose hypotheses based on available genomic sequences and discuss future directions.
Collapse
Affiliation(s)
- David A Russo
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Julie A Z Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburgerstr. 159, D-07743 Jena, Germany
| |
Collapse
|
9
|
Thirumurthy MA, Hitchcock A, Cereda A, Liu J, Chavez MS, Doss BL, Ros R, El-Naggar MY, Heap JT, Bibby TS, Jones AK. Type IV Pili-Independent Photocurrent Production by the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:1344. [PMID: 32714295 PMCID: PMC7344198 DOI: 10.3389/fmicb.2020.01344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Biophotovoltaic devices utilize photosynthetic organisms such as the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) to generate current for power or hydrogen production from light. These devices have been improved by both architecture engineering and genetic engineering of the phototrophic organism. However, genetic approaches are limited by lack of understanding of cellular mechanisms of electron transfer from internal metabolism to the cell exterior. Type IV pili have been implicated in extracellular electron transfer (EET) in some species of heterotrophic bacteria. Furthermore, conductive cell surface filaments have been reported for cyanobacteria, including Synechocystis. However, it remains unclear whether these filaments are type IV pili and whether they are involved in EET. Herein, a mediatorless electrochemical setup is used to compare the electrogenic output of wild-type Synechocystis to that of a ΔpilD mutant that cannot produce type IV pili. No differences in photocurrent, i.e., current in response to illumination, are detectable. Furthermore, measurements of individual pili using conductive atomic force microscopy indicate these structures are not conductive. These results suggest that pili are not required for EET by Synechocystis, supporting a role for shuttling of electrons via soluble redox mediators or direct interactions between the cell surface and extracellular substrates.
Collapse
Affiliation(s)
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Angelo Cereda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jiawei Liu
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Marko S. Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Bryant L. Doss
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Robert Ros
- Department of Physics, Arizona State University, Tempe, AZ, United States
| | - Mohamed Y. El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - John T. Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thomas S. Bibby
- Ocean and Earth Science, University of Southampton, Southampton, United Kingdom
| | - Anne K. Jones
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|