1
|
Sun G, Zhang C, Shan X, Zhang Z, Wang W, Lu W, Dai Z, E L, Wang Y, Ma Z, Hou X. Conjunctive BSA-Seq and BSR-Seq to Map the Genes of Yellow Leaf Mutations in Hot Peppers ( Capsicum annuum L.). Genes (Basel) 2024; 15:1115. [PMID: 39336705 PMCID: PMC11430990 DOI: 10.3390/genes15091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Yellow leaf mutations have been widely used to study the chloroplast structures, the pigment synthesis, the photosynthesis mechanisms and the chlorophyll biosynthesis pathways across various species. For this study, a spontaneous mutant with the yellow leaf color named 96-140YBM was employed to explore the primary genetic elements that lead to the variations in the leaf color of hot peppers. To identify the pathways and genes associated with yellow leaf phenotypes, we applied sequencing-based Bulked Segregant Analysis (BSA-Seq) combined with BSR-Seq. We identified 4167 differentially expressed genes (DEGs) in the mutant pool compared with the wild-type pool. The results indicated that DEGs were involved in zeatin biosynthesis, plant hormone signal transduction, signal transduction mechanisms, post-translational modification and protein turnover. A total of 437 candidates were identified by the BSA-Seq, while the BSR-Seq pinpointed four candidate regions in chromosomes 8 and 9, containing 222 candidate genes. Additionally, the combination of BSA-Seq and BSR-Seq showed that there were 113 overlapping candidate genes between the two methods, among which 8 common candidates have been previously reported to be related to the development of chloroplasts, the photomorphogenesis and chlorophyll formation of plant chloroplasts and chlorophyll biogenesis. qRT-PCR analysis of the 8 common candidates showed higher expression levels in the mutant pool compared with the wild-type pool. Among the overlapping candidates, the DEG analysis showed that the CaKAS2 and CaMPH2 genes were down-regulated in the mutant pool compared to the wild type, suggesting that these genes may be key contributors to the yellow leaf phenotype of 96-140YBM. This research will deepen our understanding of the genetic basis of leaf color formation and provide valuable information for the breeding of hot peppers with diverse leaf colors.
Collapse
Affiliation(s)
- Guosheng Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Xi Shan
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Zhenchao Zhang
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Wenlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Wenjun Lu
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Zhongliang Dai
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Liu E
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Yaolong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| | - Zhihu Ma
- Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 1# Hongjing Road, Jurong 212400, China; (X.S.); (Z.Z.); (W.L.); (Z.D.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (G.S.); (C.Z.); (W.W.); (L.E.); (Y.W.)
| |
Collapse
|
2
|
Pandey S. Agronomic potential of plant-specific Gγ proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:337-347. [PMID: 38623166 PMCID: PMC11016034 DOI: 10.1007/s12298-024-01428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132 USA
| |
Collapse
|
3
|
Wei M, Luo T, Huang D, Ma Z, Liu C, Qin Y, Wu Z, Zhou X, Lu Y, Yan L, Qin G, Zhang Y. Construction of High-Density Genetic Map and QTL Mapping for Grain Shape in the Rice RIL Population. PLANTS (BASEL, SWITZERLAND) 2023; 12:2911. [PMID: 37631123 PMCID: PMC10458266 DOI: 10.3390/plants12162911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Grain shape is an important agronomic trait directly associated with yield in rice. In order to explore new genes related to rice grain shape, a high-density genetic map containing 2193 Bin markers (526957 SNP) was constructed by whole-genome resequencing of 208 recombinant inbred (RILs) derived from a cross between ZP37 and R8605, with a total genetic distance of 1542.27 cM. The average genetic distance between markers was 0.76 cM, and the physical distance was 201.29 kb. Quantitative trait locus (QTL) mapping was performed for six agronomic traits related to rice grain length, grain width, length-to-width ratio, thousand-grain weight, grain cross-sectional area, and grain perimeter under three different environments. A total of 39 QTLs were identified, with mapping intervals ranging from 8.1 kb to 1781.6 kb and an average physical distance of 517.5 kb. Among them, 15 QTLs were repeatedly detected in multiple environments. Analysis of the genetic effects of the identified QTLs revealed 14 stable genetic loci, including three loci that overlapped with previously reported gene positions, and the remaining 11 loci were newly identified loci associated with two or more environments or traits. Locus 1, Locus 3, Locus 10, and Locus 14 were novel loci exhibiting pleiotropic effects on at least three traits and were detected in multiple environments. Locus 14, with a contribution rate greater than 10%, influenced grain width, length-to-width ratio, and grain cross-sectional area. Furthermore, pyramiding effects analysis of three stable genetic loci showed that increasing the number of QTL could effectively improve the phenotypic value of grain shape. Collectively, our findings provided a theoretical basis and genetic resources for the cloning, functional analysis, and molecular breeding of genes related to rice grain shape.
Collapse
Affiliation(s)
- Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Zishuai Wu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Xiaolong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Liuhui Yan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (M.W.); (T.L.); (D.H.); (Z.M.); (C.L.); (Z.W.); (X.Z.); (L.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China
| |
Collapse
|
4
|
Mannu J, Latha AM, Rajagopal S, Lalitha HDA, Muthurajan R, Loganathan A, Subbarayalu M, Ramasamy G, Jegadeesan R. Whole genome sequencing of ASD 16 and ADT 43 to identify predominant grain size and starch associated alleles in rice. Mol Biol Rep 2022; 49:11743-11754. [PMID: 36201102 DOI: 10.1007/s11033-022-07935-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND The rice cultivars ASD 16 and ADT 43 are the most popular high-yielding Indica rice cultivars in southern India. Despite their popularity very little is known about their genetic basis due to lack of studies on the complete genome. In the current study, efforts were made to identify alleles and SNP markers that differentiate the two contrasting rice genotypes, ASD 16 and ADT 43 for grain shape and starch content. METHODS AND RESULTS The complete genome of bold grain ASD 16 and slender grain ADT 43 were sequenced via Illumina's paired-end sequencing and the reads obtained were mapped to the Oryza sativa Indica Group cultivar 93-11 reference genome. The grain size of rice is controlled by Quantitative Trait Loci (QTL) that has a robust effect on grain yield and quality. To gain insight into genes that controlling grain size and starch content, an in-silico analysis was performed by taking into account of 72 grain elongation and starch biosynthesis genes. The identified alleles were further validated in the whole genome sequencing data of 32 bold grain and 25 slender grain varieties that were retrieved from the 3 K rice genome project. CONCLUSION An "A to G" polymorphism leading to SER 74 PRO was identified at the CDS position 220 of the An-1 gene, encoding bHLH domain-containing protein that regulates awn formation and increase in grain length. The non-synonymous substitutions such as A545C variant leading PHE 182 CYS in ADP Glucose Pyrophosphorylase large subunit IV (AGPL4) and C3094G variant leading to VAL 1032 LEU in Starch synthase IIIb (OsSSIIIb) were also identified in the starch biosynthesis genes. These identified allelic variants may contribute to the crop improvement programs in rice.
Collapse
Affiliation(s)
- Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Abillasha Mohan Latha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Shalini Rajagopal
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Hari Dharani A Lalitha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Mohankumar Subbarayalu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Gnanam Ramasamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Ramalingam Jegadeesan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
5
|
Aslam K, Naveed SA, Sabar M, Shabir G, Shah SM, Khan AR, Shah MM, Fiaz S, Xu J, Arif M. Identification of QTLs for rice grain size and weight by high-throughput SNP markers in the IR64 x Sadri population. Front Genet 2022; 13:955347. [PMID: 36061203 PMCID: PMC9437704 DOI: 10.3389/fgene.2022.955347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Grain appearance is one of the most important attributes of rice. It is determined by grain size, shape, and weight, which in turn influences the rice yield and market value. In this study, QTLs for grain length, grain width, grain length/width ratio, and grain weight were mapped using the high-throughput indica/indica SNP platforms. The population of the mega indica variety IR64 and the high-quality aromatic variety Sadri from Iran was phenotyped. Based on this phenotypic data, plants of 94 F2:3 families including both parents were selected. A linkage map analysis of 210 SNP markers identified 14 QTLs controlling the grain length, grain width, length/width ratio, and 1,000 grain weight. Among these 14, one important region containing the QTLs for all the four studies’ traits was mapped on chromosome 8. It was derived from Sadri for the decreased length/width ratio and increased grain weight. This study demonstrated the speed and efficiency in using multiplex SNP genotyping for QTL analysis. Moreover, this study identified four novel QTLs (qGL8, qTGW8, qLWR8, and qGW8) sharing the same position on chromosome 8 which were linked with grain quality characteristics between one indica and one aromatic variety. It will enable more precise marker-assisted selection for grain weight, shape, and size. Further in-depth studies are required to dissect this region of interest and identify the related gene(s).
Collapse
Affiliation(s)
- Kashif Aslam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, BZ University, Multan, Pakistan
- *Correspondence: Kashif Aslam, ; Jianlong Xu,
| | - Shahzad Amir Naveed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | | | - Ghulam Shabir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shahid Masood Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Musaddiq Shah
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Jianlong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kashif Aslam, ; Jianlong Xu,
| | - Muhammad Arif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
6
|
Majeed A, Johar P, Raina A, Salgotra RK, Feng X, Bhat JA. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Front Genet 2022; 13:944501. [PMID: 36003337 PMCID: PMC9393495 DOI: 10.3389/fgene.2022.944501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/26/2022] Open
Abstract
Most plant traits are governed by polygenes including both major and minor genes. Linkage mapping and positional cloning have contributed greatly to mapping genomic loci controlling important traits in crop species. However, they are low-throughput, time-consuming, and have low resolution due to which their efficiency in crop breeding is reduced. In this regard, the bulk segregant analysis sequencing (BSA-seq) and its related approaches, viz., quantitative trait locus (QTL)-seq, bulk segregant RNA-Seq (BSR)-seq, and MutMap, have emerged as efficient methods to identify the genomic loci/QTLs controlling specific traits at high resolution, accuracy, reduced time span, and in a high-throughput manner. These approaches combine BSA with next-generation sequencing (NGS) and enable the rapid identification of genetic loci for qualitative and quantitative assessments. Many previous studies have shown the successful identification of the genetic loci for different plant traits using BSA-seq and its related approaches, as discussed in the text with details. However, the efficiency and accuracy of the BSA-seq depend upon factors like sequencing depth and coverage, which enhance the sequencing cost. Recently, the rapid reduction in the cost of NGS together with the expected cost reduction of third-generation sequencing in the future has further increased the accuracy and commercial applicability of these approaches in crop improvement programs. This review article provides an overview of BSA-seq and its related approaches in crop breeding together with their merits and challenges in trait mapping.
Collapse
Affiliation(s)
- Aasim Majeed
- School of Agricultural Biotechnology, Punjab Agriculture University (PAU), Ludhiana, India
| | - Prerna Johar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aamir Raina
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - R. K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | | | - Javaid Akhter Bhat
- Zhejiang Lab, Hangzhou, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Vejchasarn P, Shearman JR, Chaiprom U, Phansenee Y, Suthanthangjai A, Jairin J, Chamarerk V, Tulyananda T, Amornbunchornvej C. Population Structure of Nation-Wide Rice in Thailand. RICE (NEW YORK, N.Y.) 2021; 14:88. [PMID: 34693480 PMCID: PMC8542525 DOI: 10.1186/s12284-021-00528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Thailand is a country with large diversity in rice varieties due to its rich and diverse ecology. In this paper, 300 rice accessions from all across Thailand were sequenced to identify SNP variants allowing for the population structure to be explored. RESULTS The result of inferred population structure from admixture and clustering analysis illustrated strong evidence of substructure in each geographical region. The results of phylogenetic tree, PCA analysis, and machine learning on population identifying SNPs also supported the inferred population structure. CONCLUSION The population structure inferred in this study contains five subpopulations that tend to group individuals based on location. So, each subpopulation has unique genetic patterns, agronomic traits, as well as different environmental conditions. This study can serve as a reference point of the nation-wide population structure for supporting breeders and researchers who are interested in Thai rice.
Collapse
Affiliation(s)
| | - Jeremy R. Shearman
- National Omics Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120 Pathum Thani, Thailand
| | - Usawadee Chaiprom
- National Biobank of Thailand (NBT), 144 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120 Pathum Thani, Thailand
| | | | | | - Jirapong Jairin
- Ubonratchathani Rice Research Center, 34000 Ubonratchathani, Thailand
| | | | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Chainarong Amornbunchornvej
- National Electronics and Computer Technology Center (NECTEC), 112 Phahonyothin Road, Khlong Nueng, Khlong Luang District, 12120 Pathum Thani, Thailand
| |
Collapse
|
8
|
Fang T, Bai Y, Huang W, Wu Y, Yuan Z, Luan X, Liu X, Sun L. Identification of Potential Gene Regulatory Pathways Affecting the Ratio of Four-Seed Pod in Soybean. Front Genet 2021; 12:717770. [PMID: 34539747 PMCID: PMC8440838 DOI: 10.3389/fgene.2021.717770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
The number of four-seed pods is one of the most important agronomic traits affected by gene and environment that can potentially improve soybean (Glycine max) yield. However, the gene regulatory network that affects the ratio of four-seed pod (the ratio of the number of four-seed pods to the total number of pods in each individual plant) is yet unclear. Here, we performed bulked segregant RNA sequencing (BSR-seq) on a series of recombinant inbred lines (RILs) derived from hybrid progenies between Heinong 48 (HN48), a cultivar with a high ratio of four-seed pod, and Henong 64 (HN64), a cultivar with a low ratio of four-seed pod. Two tissues, flower bud and young pod, at two different growth stages, R1 and R3, were analyzed under the ratios of four-seed pod at less than 10% and greater than 30%, respectively. To identify the potential gene regulation pathways associated with the ratio of soybean four-seed pod, we performed differentially expressed analysis on the four bulked groups. A differentially expressed gene (DEG) encoding a photosystem II 5-kDa protein had the function of participating in the energy conversion of photosynthesis. In addition, 79 common DEGs were identified at different developmental stages and under different ratios of four-seed pod. Among them, four genes encoding calcium-binding proteins and a WRKY transcription factor were enriched in the plant-pathogen interaction pathway, and they showed a high level of expression in roots. Moreover, 10 DEGs were identified in the reported quantitative trait locus (QTL) interval of four-seed pod, and two of them were significantly enriched in the pentose and glucuronate interconversion pathway. These findings provide basic insights into the understanding of the underlying gene regulatory network affected by specific environment and lay the foundation for identifying the targets that affect the ratio of four-seed pod in soybean.
Collapse
Affiliation(s)
- Ting Fang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yiwei Bai
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wenxuan Huang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yueying Wu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhihui Yuan
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoyan Luan
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, China
| | - Xinlei Liu
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, China
| | - Lianjun Sun
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory for Crop Genetic Improvement and College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Zhang R, Ren Y, Wu H, Yang Y, Yuan M, Liang H, Zhang C. Mapping of Genetic Locus for Leaf Trichome Formation in Chinese Cabbage Based on Bulked Segregant Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040771. [PMID: 33919922 PMCID: PMC8070908 DOI: 10.3390/plants10040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Chinese cabbage is a leafy vegetable, and its leaves are the main edible organs. The formation of trichomes on the leaves can significantly affect its taste, so studying this phenomenon is of great significance for improving the quality of Chinese cabbage. In this study, two varieties of Chinese cabbage, W30 with trichome leaves and 082 with glabrous leaves, were crossed to generate F1 and F1 plants, which were self-fertilized to develop segregating populations with trichome or glabrous morphotypes. The two bulks of the different segregating populations were used to conduct bulked segregant analysis (BSA). A total of 293.4 M clean reads were generated from the samples, and plants from the trichome leaves (AL) bulk and glabrous leaves (GL) bulk were identified. Between the two DNA pools generated from the trichome and glabrous plants, 55,048 SNPs and 272 indels were generated. In this study, three regions (on chromosomes 6, 10 and scaffold000100) were identified, and the annotation revealed three candidate genes that may participate in the formation of leaf trichomes. These findings suggest that the three genes-Bra025087 encoding a cyclin family protein, Bra035000 encoding an ATP-binding protein/kinase/protein kinase/protein serine/threonine kinase and Bra033370 encoding a WD-40 repeat family protein-influence the formation of trichomes by participating in trichome morphogenesis (GO: 0010090). These results demonstrate that BSA can be used to map genes associated with traits and provide new insights into the molecular mechanism of leafy trichome formation in Chinese cabbage.
Collapse
|