1
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Li J, Liu Y, Wang J, Liu M, Li Y, Zheng J. Effects of Different LED Spectra on the Antioxidant Capacity and Nitrogen Metabolism of Chinese Cabbage ( Brassica rapa L. ssp. Pekinensis). PLANTS (BASEL, SWITZERLAND) 2024; 13:2958. [PMID: 39519877 PMCID: PMC11548317 DOI: 10.3390/plants13212958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Light quality optimization is a cost-effective method for increasing leafy vegetable quality in plant factories. Light-emitting diodes (LEDs) that enable the precise modulation of light quality were used in this study to examine the effects of red-blue (RB), red-blue-green (RBG), red-blue-purple (RBP), and red-blue-far-red (RBF) lights on the growth, antioxidant capacity, and nitrogen metabolism of Chinese cabbage leaves, while white light served as the control (CK). Results showed that the chlorophyll, carotenoid, vitamin C, amino acid, total flavonoid, and antioxidant levels of Chinese cabbage were all significantly increased under RBP combined light treatment. Meanwhile, RBG combined light treatment significantly increased the levels of amino acids but decreased the nitrite content of Chinese cabbage. In addition, RBF combined light treatment remarkably increased the amino acid levels but decreased the antioxidant capacity of Chinese cabbage. In conclusion, the addition of purple light to red-blue light was effective in improving the nutritional value and antioxidant capacity of Chinese cabbage. This light condition can be used as a model for a supplemental lighting strategy for leafy vegetables in plant factory production.
Collapse
Affiliation(s)
- Jie Li
- Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.L.); (Y.L.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yubing Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (J.W.); (M.L.)
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (J.W.); (M.L.)
| | - Mingyue Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (J.W.); (M.L.)
| | - Yanling Li
- Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.L.); (Y.L.)
| | - Jingyuan Zheng
- Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.L.); (Y.L.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
3
|
Anwar A, Zheng J, Chen C, Chen M, Xue Y, Wang J, Su W, Chen R, Song S. Effects of NH 4 +-N: NO 3 --N ratio on growth, nutrient uptake and production of blueberry ( Vaccinium spp.) under soilless culture. FRONTIERS IN PLANT SCIENCE 2024; 15:1438811. [PMID: 39502920 PMCID: PMC11536338 DOI: 10.3389/fpls.2024.1438811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Blueberry (Vaccinium corymbosum) is a small pulp shrub, which prefers to grow on a soilless culture. For soilless culture, nutritional management remains typically vital for blueberry production. However, the effect of different nutritional treatments on blueberry growth and production is largely unknown. This study was designed to investigate to formulate a specific nutritional treatment for blueberry. The results showed that NH4 +-N: NO3 --N ratios significantly affected the growth, nutrient uptake, physiological characteristics, and flowering, as well as the fruiting characteristics of blueberry plants. The number of shoots and top projection area was increased considerably by 25:75 treatment. In contrast, 50:50 treatment promotes plant height, shoot length, and stem thickness, increasing chlorophyll contents, photosynthetic capacity, and P, Ca, and Mg in leaves. In contrast, 50:50 treatment promotes the flowering fruiting rate and prolongs the blueberry flowering period. The maximum soluble sugar contents were noted in 25:75, while maximum starch contents were reported in the 50:50 treatment. The treatments 100:0 and 75:25 promote early flowering and accelerate fruit set. Notably, NH4 +-N: NO3 --N ratios; 50:50 treatment significantly encourages plant growth, nutrient uptake, chlorophyll contents, photosynthetic capacity, and fruit setting rate in blueberry plants. These findings suggested that NH4 +-N: NO3 --N ratios 50:50 is the most appropriate treatment that significantly promotes vegetative growth and enhances production in blueberry plants. This study provides valuable information for improved blueberry production under a controlled environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Casas-Agustench P, Hayter JM, Ng OSB, Hallewell LV, Clark NJ, Bescos R. Nitrate, Nitrite, and Iodine Concentrations in Commercial Edible Algae: An Observational Study. Foods 2024; 13:2615. [PMID: 39200542 PMCID: PMC11353717 DOI: 10.3390/foods13162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Edible algae are a natural source of nutrients, including iodine, and can also contain nitrogen in the form of nitrate (NO3-) and nitrite (NO2-) as they can fix nitrogen from seawater. This study aimed to analyse the NO3-, NO2-, and iodine concentrations in eighteen macroalgae and five microalgae species commercially available in the United Kingdom. NO3- and NO2- concentrations were measured using high-performance liquid chromatography (HPLC), and iodine was determined using inductively coupled plasma mass spectrometry (ICP-MS). NO3- and iodine concentrations in macroalgae (NO3-: 4050.13 ± 1925.01 mg/kg; iodine: 1925.01 ± 1455.80 mg/kg) were significantly higher than in microalgae species (NO3-: 55.73 ± 93.69 mg/kg; iodine: 17.61 ± 34.87 mg/kg; p < 0.001 for both). In the macroalgae group, nori had the highest NO3- (17,191.33 ± 980.89 mg/kg) and NO2- (3.64 ± 2.38 mg/kg) content, as well as the highest iodine content. Among microalgae, Dunaliella salina had the highest concentration of NO3- (223.00 ± 21.93 mg/kg) and iodine (79.97 ± 0.76 mg/kg), while Spirulina had the highest concentration of NO2- (7.02 ± 0.13 mg/kg). These results indicate that commercially available edible algae, particularly macroalgae species, could be a relevant dietary source of NO3- and iodine.
Collapse
Affiliation(s)
- Patricia Casas-Agustench
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth PL4 6AB, UK; (J.M.H.); (O.S.B.N.); (N.J.C.); (R.B.)
| | | | | | | | | | | |
Collapse
|
5
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Variations in photoperiods and their impact on yield, photosynthesis and secondary metabolite production in basil microgreens. BMC PLANT BIOLOGY 2024; 24:712. [PMID: 39060976 PMCID: PMC11282849 DOI: 10.1186/s12870-024-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 μmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Ali Redha A, Torquati L, Langston F, Nash GR, Gidley MJ, Cozzolino D. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Crit Rev Food Sci Nutr 2023; 64:8248-8264. [PMID: 37035931 DOI: 10.1080/10408398.2023.2198015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Cruciferous vegetables and oilseeds are rich in glucosinolates that can transform into isothiocyanates upon enzymic hydrolysis during post-harvest handling, food preparation and/or digestion. Vegetables contain glucosinolates that have beneficial bioactivities, while glucosinolates in oilseeds might have anti-nutritional properties. It is therefore important to monitor and assess glucosinolates and isothiocyanates content through the food value chain as well as for optimized crop production. Vibrational spectroscopy methods, such as infrared (IR) spectroscopy, are used as a nondestructive, rapid and low-cost alternative to the current and common costly, destructive, and time-consuming techniques. This systematic review discusses and evaluates the recent literature available on the use of IR spectroscopy to determine glucosinolates and isothiocyanates in vegetables and oilseeds. NIR spectroscopy was used to predict glucosinolates in broccoli, kale, rocket, cabbage, Brussels sprouts, brown mustard, rapeseed, pennycress, and a combination of Brassicaceae family seeds. Only one study reported the use of NIR spectroscopy to predict broccoli isothiocyanates. The major limitations of these studies were the absence of the critical evaluation of errors associated with the reference method used to develop the calibration models and the lack of interpretation of loadings or regression coefficients used to predict glucosinolates.
Collapse
Affiliation(s)
- Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Luciana Torquati
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Faye Langston
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Geoffrey R Nash
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Michael J Gidley
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Tsaballa A, Xanthopoulou A, Sperdouli I, Bantis F, Boutsika A, Chatzigeorgiou I, Tsaliki E, Koukounaras A, Ntinas GK, Ganopoulos I. LED omics in Rocket Salad ( Diplotaxis tenuifolia): Comparative Analysis in Different Light-Emitting Diode (LED) Spectrum and Energy Consumption. PLANTS (BASEL, SWITZERLAND) 2023; 12:1203. [PMID: 36986894 PMCID: PMC10059670 DOI: 10.3390/plants12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
By applying three different LED light treatments, designated as blue (B), red (R)/blue (B), red (R) and white (W) light, as well as the control, the effect on Diplotaxis tenuifolia phenotype (yield and quality), and physiological, biochemical, and molecular status, as well as growing system resource use efficiency, was examined. We observed that basic leaf characteristics, such as leaf area, leaf number, relative chlorophyll content, as well as root characteristics, such as total root length and root architecture, remained unaffected by different LEDs. Yield expressed in fresh weight was slightly lower in LED lights than in the control (1113 g m-2), with R light producing the least (679 g m-2). However, total soluble solids were significantly affected (highest, 5.5° Brix, in R light) and FRAP was improved in all LED lights (highest, 191.8 μg/g FW, in B) in comparison to the control, while the nitrate content was less (lowest, 949.2 μg/g FW, in R). Differential gene expression showed that B LED light affected more genes in comparison to R and R/B lights. Although total phenolic content was improved under all LED lights (highest, 1.05 mg/g FW, in R/B), we did not detect a significant amount of DEGs in the phenylpropanoid pathway. R light positively impacts the expression of the genes encoding for photosynthesis components. On the other hand, the positive impact of R light on SSC was possibly due to the expression of key genes being induced, such as SUS1. In summary, this research is an integrative and innovative study, where the exploration of the effect of different LED lights on rocket growing under protected cultivation, in a closed chamber cultivation system, was performed at multiple levels.
Collapse
Affiliation(s)
- Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Filippos Bantis
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Boutsika
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioanna Chatzigeorgiou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Athanasios Koukounaras
- Department of Horticulture, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios K. Ntinas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ELGO-Dimitra), GR-57001 Thermi, Greece
| |
Collapse
|
8
|
Walsh CA, Bräutigam A, Roberts MR, Lundgren MR. Evolutionary implications of C2 photosynthesis: how complex biochemical trade-offs may limit C4 evolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:707-722. [PMID: 36437625 PMCID: PMC9899418 DOI: 10.1093/jxb/erac465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The C2 carbon-concentrating mechanism increases net CO2 assimilation by shuttling photorespiratory CO2 in the form of glycine from mesophyll to bundle sheath cells, where CO2 concentrates and can be re-assimilated. This glycine shuttle also releases NH3 and serine into the bundle sheath, and modelling studies suggest that this influx of NH3 may cause a nitrogen imbalance between the two cell types that selects for the C4 carbon-concentrating mechanism. Here we provide an alternative hypothesis outlining mechanisms by which bundle sheath NH3 and serine play vital roles to not only influence the status of C2 plants along the C3 to C4 evolutionary trajectory, but to also convey stress tolerance to these unique plants. Our hypothesis explains how an optimized bundle sheath nitrogen hub interacts with sulfur and carbon metabolism to mitigate the effects of high photorespiratory conditions. While C2 photosynthesis is typically cited for its intermediary role in C4 photosynthesis evolution, our alternative hypothesis provides a mechanism to explain why some C2 lineages have not made this transition. We propose that stress resilience, coupled with open flux tricarboxylic acid and photorespiration pathways, conveys an advantage to C2 plants in fluctuating environments.
Collapse
Affiliation(s)
- Catherine A Walsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrea Bräutigam
- Faculty of Biology, Bielefeld University, Universität str. 27, D-33615 Bielefeld, Germany
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | |
Collapse
|
9
|
Marler TE, Shaw CA. Metals and Metalloids Increase in Cycas micronesica Seed Gametophyte Tissue in Shaded Growth Conditions. TOXICS 2022; 10:550. [PMID: 36287831 PMCID: PMC9609483 DOI: 10.3390/toxics10100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure to environmental toxins may be partly responsible for mammal neurodegenerative disorders. Consumption of seeds from Guam's cycad tree has been linked to the disorder known as amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC). The unambiguous identification of causal agents of ALS-PDC has been elusive. We have examined the levels of eight metals and metalloids in cycad seeds as a function of the ambient shade in which the plants were grown. Of these metals, the data strongly suggest that aluminum (Al) and selenium (Se) are present in washed flour prepared from southern Guam's cycad seed tissues at elevated levels, especially when the trees are grown in shade. Previous authors have speculated that Al and Se are involved in various ALS outcomes, and our results support this interpretation.
Collapse
Affiliation(s)
- Thomas E. Marler
- Bagong Kaalaman Botanikal Institute, 15 Rizal Street, Barangay Malabañas, Angeles City 2009, Philippines
| | - Christopher A. Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
10
|
Liang Y, Cossani CM, Sadras VO, Yang Q, Wang Z. The Interaction Between Nitrogen Supply and Light Quality Modulates Plant Growth and Resource Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:864090. [PMID: 35599862 PMCID: PMC9115566 DOI: 10.3389/fpls.2022.864090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen availability and light quality affect plant resource allocation, but their interaction is poorly understood. Herein, we analyzed the growth and allocation of dry matter and nitrogen using lettuce (Lactuca sativa L.) as a plant model in a factorial experiment combining three light regimes (100% red light, R; 50% red light + 50% blue light, RB; 100% blue light, B) and two nitrogen rates (low, 0.1 mM N; high, 10 mM N). Red light increased shoot dry weight in relation to both B and RB irrespective of nitrogen supply. Blue light favored root growth under low nitrogen. Allometric analysis showed lower allocation to leaf in response to blue light under low nitrogen and similar leaf allocation under high nitrogen. A difference in allometric slopes between low nitrogen and high nitrogen in treatments with blue light reflected a strong interaction effect on root-to-shoot biomass allocation. Shoot nitrate concentration increased with light exposure up to 14 h in both nitrogen treatments, was higher under blue light with high nitrogen, and varied little with light quality under low nitrogen. Shoot nitrogen concentration, nitrogen nutrition index, and shoot NR activity increased in response to blue light. We conclude that the interaction between blue light and nitrogen supply modulates dry mass and nitrogen allocation between the shoot and root.
Collapse
Affiliation(s)
- Ying Liang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Sciences, Chengdu, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - C. Mariano Cossani
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Victor O. Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Sciences, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agriculture Sciences, Chengdu, China
| |
Collapse
|
11
|
Proietti S, Moscatello S, Riccio F, Downey P, Battistelli A. Continuous Lighting Promotes Plant Growth, Light Conversion Efficiency, and Nutritional Quality of Eruca vesicaria (L.) Cav. in Controlled Environment With Minor Effects Due to Light Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:730119. [PMID: 34712255 PMCID: PMC8546256 DOI: 10.3389/fpls.2021.730119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 05/17/2023]
Abstract
Light-emitting diode lamps can allow for the optimization of lighting conditions in artificial growing environments, with respect to light quality, quantity, and photoperiod extension, to precisely manage resources and crop performance. Eruca vesicaria (L.) Cav. was hydroponically cultured under three light treatments to investigate the effect on yield and nutritional properties of rocket plants. A treatment of (W-12h) having a12/12 h light/dark at 600 μmol m-2 s-1 provided by LEDs W:FR:R:B = 12:2:71:15 was compared with two treatments of continuous lighting (CL), 24 h light at 300 μmol m-2 s-1 provided by cool white LEDs (W-CL), and by LED R:B = 73:27 (RB-CL). CL enhanced the growth of the rocket plants: total fresh biomass, leaf fresh weight, and shoot/root ratio increased in W-CL, and leaf dry weight, leaf dry matter %, root fresh and dry weight, and specific leaf dry weight (SLDW) increased in RB-CL. Total carbon content was higher in RB-CL, whereas total nitrogen and proteins content increased in W-12h. Both W-CL and RB-CL increased carbohydrate content in the rocket leaves, while W-CL alone increased the sugar content in the roots. Fibers, pigments, antioxidant compounds, and malic acid were increased by CL regardless of the light spectrum applied. Nitrate was significantly reduced in the rocket leaves grown both in W-CL and RB-CL. Thus, the application of CL with low light intensity can increase the yield and quality value of rocket, highlighting that careful scheduling of light spectrum, intensity, and photoperiod can improve the performance of the crop.
Collapse
Affiliation(s)
- Simona Proietti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Stefano Moscatello
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Francesca Riccio
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Peter Downey
- Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Alberto Battistelli
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| |
Collapse
|
12
|
Toscano S, Cavallaro V, Ferrante A, Romano D, Patané C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081584. [PMID: 34451630 PMCID: PMC8399618 DOI: 10.3390/plants10081584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
To improve microgreen yield and nutritional quality, suitable light spectra can be used. Two species-amaranth (Amaranthus tricolor L.) and turnip greens (Brassica rapa L. subsp. oleifera (DC.) Metzg)-were studied. The experiment was performed in a controlled LED environment growth chamber (day/night temperatures of 24 ± 2 °C, 16 h photoperiod, and 50/60% relative humidity). Three emission wavelengths of a light-emitting diode (LED) were adopted for microgreen lighting: (1) white LED (W); (2) blue LED (B), and (3) red LED (R); the photosynthetic photon flux densities were 200 ± 5 µmol for all light spectra. The response to light spectra was often species-specific, and the interaction effects were significant. Morphobiometric parameters were influenced by species, light, and their interaction; at harvest, in both species, the fresh weight was significantly greater under B. In amaranth, Chl a was maximized in B, whereas it did not change with light in turnip greens. Sugar content varied with the species but not with the light spectra. Nitrate content of shoots greatly varied with the species; in amaranth, more nitrates were measured in R, while no difference in turnip greens was registered for the light spectrum effect. Polyphenols were maximized under B in both species, while R depressed the polyphenol content in amaranth.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, 95123 Catania, Italy;
| | - Valeria Cavallaro
- IBE-Istituto di BioEconomia, Consiglio Nazionale delle Ricerche, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, 95123 Catania, Italy;
- Correspondence:
| | - Cristina Patané
- IBE-Istituto di BioEconomia, Consiglio Nazionale delle Ricerche, 95126 Catania, Italy; (V.C.); (C.P.)
| |
Collapse
|
13
|
Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present work aims to explore the potential to improve quality of purslane microgreens by combining water salinity and LED lighting during their cultivation. Purslane plants were grown in a growth chamber with light insulated compartments, under different lighting sources on a 16 h d−1 photoperiod—fluorescent lamps (FL) and two LED treatments, including a red and blue (RB)) spectrum and a red, blue and far red (RB+IR) LED lights spectrum—while providing all of them a light intensity of 150 µmol m−2 s−1. Plants were exposed to two salinity treatments, by adding 0 or 80 mM NaCl. Biomass, cation and anions, total phenolics (TPC) and flavonoids content (TFC), total antioxidant capacity (TAC), total chlorophylls (Chl) and carotenoids content (Car) and fatty acids were determined. The results showed that yield was increased by 21% both in RB and RB+FR lights compared to FL and in salinity compared to non-salinity conditions. The nitrate content was reduced by 81% and 91% when microgreens were grown under RB and RB+FR, respectively, as compared to FL light, and by 9.5% under saline conditions as compared with non-salinity conditions. The lowest oxalate contents were obtained with the combinations of RB or RB+FR lighting and salinity. The content of Cl and Na in the leaves were also reduced when microgreens were grown under RB and RB+FR lights under saline conditions. Microgreens grown under RB light reached the highest TPC, while salinity reduced TFC, Chl and Car. Finally, the fatty acid content was not affected by light or salinity, but these factors slightly influenced their composition. It is concluded that the use of RB and RB+FR lights in saline conditions is of potential use in purslane microgreens production, since it improves the yield and quality of the product, reducing the content of anti-nutritional compounds.
Collapse
|
14
|
Li J, Wu T, Huang K, Liu Y, Liu M, Wang J. Effect of LED Spectrum on the Quality and Nitrogen Metabolism of Lettuce Under Recycled Hydroponics. FRONTIERS IN PLANT SCIENCE 2021; 12:678197. [PMID: 34220897 PMCID: PMC8247776 DOI: 10.3389/fpls.2021.678197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Light quality optimization is an efficient method for improving the growth and quality of lettuce in plant factories. In this study, lettuce seedlings were illuminated under different light-emitting diode (LED) lights, namely, red-blue (RB), red-blue-green (RBG), red-blue-purple (RBP), and red-blue-far-red (RBF) LED lights, to investigate the effect of light quality on growth, quality, and nitrogen metabolism. The combination of 75% red and 25% blue light was set as the basic light source, and 20% of green, purple and far-red light were added to basic light source, respectively. All the treatments were set to 200 μmol m-2 s-1. Results showed that the fresh weight and dry weight of aboveground lettuce under RBG, RBP, and RBF treatments were significantly lower than those under the RB treatment because of the decrease in the effective photon flux density for chlorophyll absorption. The vitamin C content of the lettuce leaves was increased by about 23% with the addition of purple light. For nitrate reduction, the addition of green light significantly increased the nitrite content of the lettuce leaves. It also promoted the reduction from nitrite to ammonium through the activation of the nitrite reductase (NiR) expression and enzyme activity. The nitrate and ammonium content decreased with the addition of purple light because of the inhibited NR and NiR expression and enzyme activity. For nitrogen assimilation, individual (e.g., Asp, Glu, and Leu) and total amino acids were induced to increase by adding green, purple, and far-red light. The addition of light was hypothesized to have inhibited protein biosynthesis, thereby causing the accumulation of amino acids. Correlation analysis showed that the relative expression levels between HY5 and NR/NiR presented a significantly negative correlation. Transcription factor HY5 might mediate the regulation of light quality on nitrogen metabolism by inhibiting NR and NiR expressions. It might also exert a negative effect on nitrate reduction. Further studies via genome editing techniques on the identification of HY5 functions for nitrate assimilation will be valuable. Nevertheless, the results of this work enrich the understanding of the effect of light quality on nitrate metabolism at the level of gene expression and enzyme activity.
Collapse
Affiliation(s)
- Jie Li
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Yubing Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Mingyue Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
15
|
|