1
|
Zheng J, He Y, Wang F, Zheng R, Wu J, Hänninen H, Zhang R. Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming. TREE PHYSIOLOGY 2024; 44:tpae124. [PMID: 39331733 DOI: 10.1093/treephys/tpae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.
Collapse
Affiliation(s)
- Jinbin Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Fucheng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rujing Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
2
|
Ding J, Wang K, Pandey S, Perales M, Allona I, Khan MRI, Busov VB, Bhalerao RP. Molecular advances in bud dormancy in trees. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6063-6075. [PMID: 38650362 DOI: 10.1093/jxb/erae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Seasonal bud dormancy in perennial woody plants is a crucial and intricate process that is vital for the survival and development of plants. Over the past few decades, significant advancements have been made in understanding many features of bud dormancy, particularly in model species, where certain molecular mechanisms underlying this process have been elucidated. We provide an overview of recent molecular progress in understanding bud dormancy in trees, with a specific emphasis on the integration of common signaling and molecular mechanisms identified across different tree species. Additionally, we address some challenges that have emerged from our current understanding of bud dormancy and offer insights for future studies.
Collapse
Affiliation(s)
- Jihua Ding
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Kejing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shashank Pandey
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, CNINIA (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Victor B Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
3
|
Yu B, Rossi S, Su H, Zhao P, Zhang S, Hu B, Li X, Chen L, Liang H, Huang JG. Mismatch between primary and secondary growth and its consequences on wood formation in Qinghai spruce. TREE PHYSIOLOGY 2023; 43:1886-1902. [PMID: 37584475 DOI: 10.1093/treephys/tpad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
The connections between the primary and secondary growth of trees allows better understanding of the dynamics of carbon sequestration in forest ecosystems. The relationship between primary and secondary growth of trees could change due to the diverging responses of meristems to climate warming. In this study, the bud phenology and radial growth dynamics of Qinghai spruce (Picea crassifolia) in arid and semi-arid areas of China in 2019 and 2020 were weekly monitored to analyze their response to different weather conditions and their links with carbon sink. Xylem anatomical traits (i.e. lumen radial diameter and cell wall thickness) were quantified along cell radial files after the end of xylem lignification to calculate the early-to-latewood transition date. Winter and early spring (January-March) were warmer in 2020 with a colder April compared with 2019. Precipitation in April-June was lower in 2020 than in 2019. In 2019, bud phenology occurred earlier, while the onset of xylem formation and the early-to-latewood transition date were delayed. The duration from the beginning of split bud and exposed shoot to the early-to-latewood transition date was positively correlated with the radial width of earlywood (accounting for ~80% of xylem width) and total xylem width. The longer duration of xylem cell division did not increase xylem cell production and radial width. Moreover, the duration from bud burst to the early-to-latewood transition date in 2020 was negatively linked with early phloem cell production as compared with 2019. Our findings suggest that warm conditions in winter and early spring promote the xylogenesis of Qinghai spruce, but might delay bud burst. However, the xylem width increments largely depend on the duration from bud burst to the start of latewood cell division rather than on the earlier xylogenesis and longer duration of xylem cell differentiation induced by warm conditions.
Collapse
Affiliation(s)
- Biyun Yu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec G7H2B1, Canada
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Xuebin Li
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lin Chen
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Hanxue Liang
- Key Laboratory of Ecological Restoration of Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian-Guo Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Garrigues R, Dox I, Flores O, Marchand LJ, Malyshev AV, Beemster G, AbdElgawad H, Janssens I, Asard H, Campioli M. Late autumn warming can both delay and advance spring budburst through contrasting effects on bud dormancy depth in Fagus sylvatica L. TREE PHYSIOLOGY 2023; 43:1718-1730. [PMID: 37364048 DOI: 10.1093/treephys/tpad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The current state of knowledge on bud dormancy is limited. However, expanding such knowledge is crucial in order to properly model forest responses and feedback to future climate. Recent studies have shown that warming can decrease chilling accumulation and increase dormancy depth, thereby inducing delayed budburst in European beech (Fagus sylvatica L). Whether fall warming can advance spring phenology is unclear. To investigate the effect of warming on endodormancy of deciduous trees, we tested the impact of mild elevated temperature (+2.5-3.5 °C; temperature, on average, kept at 10 °C) in mid and late autumn on the bud dormancy depth and spring phenology of beech. We studied saplings by inducing periods of warming in greenhouses over a 2-year period. Even though warming reduced chilling accumulation in both years, we observed that the response of dormancy depth and spring budburst were year-specific. We found that warming during endodormancy peak could decrease the bud dormancy depth and therefore advance spring budburst. This effect appears to be modulated by factors such as the date of senescence onset and forcing intensity during endodormancy. Results from this study suggest that not only chilling but also forcing controls bud development during endodormancy and that extra forcing in autumn can offset reduced chilling.
Collapse
Affiliation(s)
- Romain Garrigues
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Inge Dox
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Omar Flores
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Lorène J Marchand
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Andrey V Malyshev
- Institute for Botany and Landscape Ecology, Experimental Plant Ecology, University of Greifswald, Soldmannstraße 15, 17487 Greifswald, Germany
| | - Gerrit Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
- Department of Botany and Microbiology, Science Faculty, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ivan Janssens
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Matteo Campioli
- Laboratory Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk B-2610, Belgium
| |
Collapse
|
5
|
Is There Spatial and Temporal Variability in the Response of Plant Canopy and Trunk Growth to Climate Change in a Typical River Basin of Arid Areas. WATER 2022. [DOI: 10.3390/w14101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The response of plants to climate change has become a topical issue. However, there is no consensus on the synergistic processes of the canopy and trunk growth within different vegetation types, or on the consistency of the response of the canopy and trunk to climate change. This paper is based on Normalized Difference Vegetation Index (NDVI), tree-ring width index (TRW) and climate data from the Irtysh River basin, a sensitive area for climate change in Central Asia. Spatial statistical methods and correlation analysis were used to analyze the spatial and temporal trends of plants and climate, and to reveal the differences in the canopy and trunk response mechanisms to climate within different vegetation types. The results show a warming and humidifying trend between 1982 and 2015 in the study area, and NDVI and TRW increases in different vegetation type zones. On an interannual scale, temperature is the main driver of the canopy growth in alpine areas and precipitation is the main limiting factor for the canopy growth in lower altitude valley and desert areas. The degree of response of the trunk to climatic factors decreases with increasing altitude, and TRW is significantly correlated with mean annual temperature, precipitation and SPEI in desert areas. On a monthly scale, the earlier and longer growing season due to the accumulation of temperature and precipitation in the early spring and late autumn periods contributes to two highly significant trends of increase in the canopy from March to May and August to October. Climatic conditions during the growing season are the main limiting factor for the growth of the trunk, but there is considerable variation in the driving of the trunk in different vegetation type zones. The canopy growth is mainly influenced by climatic factors in the current month, while there is a 1–2-month lag effect in the response of the trunk to climatic factors. In addition, the synergy between the canopy and the trunk is gradually weakened with increasing altitude (correlation coefficient is 0.371 in alpine areas, 0.413 in valley areas and 0.583 in desert areas). These findings help to enrich the understanding of the response mechanisms to climate change in different vegetation type zones and provide a scientific basis for the development of climate change response measures in Central Asia.
Collapse
|
6
|
Stimulation, Reduction and Compensation Growth, and Variable Phenological Responses to Spring and/or Summer–Autumn Warming in Corylus Taxa and Cornus sanguinea L. FORESTS 2022. [DOI: 10.3390/f13050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding species-specific responses to climate change allows a better assessment of the possible impact of global warming on forest growth. We studied the responses of the shrub species Corylus avellana L., Corylus maxima Mill. and intermediate forms, together stated as the Corylus taxa, and Cornus sanguinea L. upon periodically elevated temperatures in spring and/or in summer–autumn. Experiments were performed in a common garden, with Belgian and Pyrenean provenances for Corylus avellana and Cornus sanguinea. In the Corylus taxa, a warmer spring resulted in a reduction in height and diameter growth. Remarkably, the reduced diameter increment was restored with full compensation in the following year. The height increment for Cornus sanguinea was larger upon a warmer summer–autumn, concurring with a later leaf senescence. Our results suggest that Corylus is more sensitive to spring warming, influencing growth negatively, whereas Cornus is more sensitive to summer–autumn warming, influencing height growth positively. These deviating responses can be explained, at least partly, by their diverging ecological niches, with the Corylus taxa being more shade-tolerant compared to Cornus sanguinea. The warm spring conditions advanced bud burst in all studied taxa, whereas the warm summer–autumn advanced leaf senescence but prolonged its duration in the Corylus taxa, as well as delayed this phenophase in Cornus sanguinea. Little to no after-effects of the temperature treatments were detected. Although Corylus avellana and Cornus sanguinea plants originated from similar origins, their growth and phenological responses in the common garden diverged, with Corylus being more stable and Cornus displaying more variation between the Belgian and Pyrenean provenances.
Collapse
|
7
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
8
|
Wang X, Liu Y, Li X, He S, Zhong M, Shang F. Spatiotemporal Variation of Osmanthus fragrans Phenology in China in Response to Climate Change From 1973 to 1996. FRONTIERS IN PLANT SCIENCE 2022; 12:716071. [PMID: 35126403 PMCID: PMC8811162 DOI: 10.3389/fpls.2021.716071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Climate change greatly affects spring and autumn plant phenology around the world consequently, and significantly impacts ecosystem function and the social economy. However, autumn plant phenology, especially autumn flowering phenology, has not been studied so far. In this study, we examined the spatiotemporal pattern of Osmanthus fragrans phenology, including both leaf phenology (the date of bud-bust, BBD; first leaf unfolding, FLD; and 50% of leaf unfolding, 50 LD) and flowering phenology (the date of first flowering, FFD; peak of flowering, PFD; and end of flowering, EFD). Stepwise multiple linear regressions were employed to analyze the relationships between phenophases and climatic factors in the long term phenological data collected by the Chinese Phenological Observation Network from 1973 to 1996. The results showed that spring leaf phenophases and autumn flowering phenophases were strongly affected by latitude. BBD, FLD, and 50LD of O. fragrans were delayed by 3.98, 3.93, and 4.40 days as per degree of latitude increased, while FFD, PFD and EFD in O. fragrans advanced 3.11, 3.26, and 2.99 days, respectively. During the entire study period, BBD was significantly delayed across the region, whereas no significant trends were observed either in FLD or 50LD. Notably, all flowering phenophases of O. fragrans were delayed. Both leaf and flowering phenophases negatively correlated with growing degree-days (GDD) and cold degree-days (CDD), respectively. BBD and FLD were negatively correlated with total annual precipitation. In addition to the effects of climate on autumn flowering phenology, we found that earlier spring leaf phenophases led to delayed autumn flowering phenophases. Our results suggest that future climate change and global warming might delay the phenological sequence of O. fragrans. Our findings also advanced the flowering mechanism study of autumn flowering plants, and facilitated the accurate prediction of future phenology and climate change.
Collapse
Affiliation(s)
- Xianping Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yinzhan Liu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin Li
- School of Software Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shibin He
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingxing Zhong
- Tourism College, Xinyang Normal University, Xinyang, China
| | - Fude Shang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Beil I, Kreyling J, Meyer C, Lemcke N, Malyshev AV. Late to bed, late to rise-Warmer autumn temperatures delay spring phenology by delaying dormancy. GLOBAL CHANGE BIOLOGY 2021; 27:5806-5817. [PMID: 34431180 DOI: 10.1111/gcb.15858] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf-out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.
Collapse
Affiliation(s)
- Ilka Beil
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Claudia Meyer
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Nele Lemcke
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Andrey V Malyshev
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Jung S, Zhao F, Menzel A. Establishing the twig method for investigations on pollen characteristics of allergenic tree species. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1983-1993. [PMID: 34043087 PMCID: PMC8536639 DOI: 10.1007/s00484-021-02154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The twig method in climate chambers has been shown to successfully work as a proxy for outdoor manipulations in various experimental setups. This study was conducted to further establish this method for the investigation of allergenic pollen from tree species (hazel, alder, and birch). Direct comparison under outdoor conditions revealed that the cut twigs compared to donor trees were similar in the timing of flowering and the amount of pollen produced. Cut twigs were able to flower in climate chambers and produced a sufficient amount of pollen for subsequent laboratory analysis. The addition of different plant or tissue fertilizers in the irrigation of the twigs did not have any influence; rather, the regular exchange of water and the usage of fungicide were sufficient for reaching the stage of flowering. In the experimental setup, the twigs were cut in different intervals before the actual flowering and were put under warming conditions in the climate chamber. An impact of warming on the timing of flowering/pollen characteristics could be seen for the investigated species. Therefore, the twig method is well applicable for experimental settings in pollen research simulating, e.g., accelerated warming under climate change.
Collapse
Affiliation(s)
- Stephan Jung
- TUM School of Life Sciences, Department of Life Science Systems, Technical University of Munich, 85354, Freising, Germany.
| | - Feng Zhao
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Oberschleißheim, Germany
| | - Annette Menzel
- TUM School of Life Sciences, Department of Life Science Systems, Technical University of Munich, 85354, Freising, Germany
- Institute of Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
11
|
Baumgarten F, Zohner CM, Gessler A, Vitasse Y. Chilled to be forced: the best dose to wake up buds from winter dormancy. THE NEW PHYTOLOGIST 2021; 230:1366-1377. [PMID: 33577087 DOI: 10.1111/nph.17270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 05/06/2023]
Abstract
Over the last decades, spring leaf-out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf-out will continue to advance with further warming because species' effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from -2°C to 10°C for 1, 3, 6 or 12 wk. We found that freezing temperatures were most effective for half of the species or as effective as chilling temperatures up to 10°C, that is, leading to minimum thermal time to and maximum success of budburst. Interestingly, chilling duration had a much larger effect on dormancy release than absolute chilling temperature. Our experimental results challenge the common assumption that optimal chilling temperatures range c. 4-6°C, instead revealing strong sensitivity to a large range of temperatures. These findings are valuable for improving phenological models and predicting future spring phenology in a warming world.
Collapse
Affiliation(s)
- Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|