1
|
Tyszka AS, Larson DA, Walker JF. Sequencing historical RNA: unrealized potential to increase understanding of the plant tree of life. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00305-4. [PMID: 39613559 DOI: 10.1016/j.tplants.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Recent studies have demonstrated that it is a misconception that transcriptome sequencing requires tissue preserved at ultracold temperatures. Here, we outline the potential origins of this misconception and its possible role in biasing the geographic distribution of published plant transcriptomes. We highlight the importance of ensuring diverse sampling by providing an overview of the questions that transcriptomes can answer about the forces shaping the plant tree of life. We discuss how broadening transcriptome sequencing to include existing specimens will allow the field to grow and more fully utilize biological collections. We hope this article encourages the expansion of the current trend in 'herbariomics' research to include whole-transcriptome sequencing of historical RNA.
Collapse
Affiliation(s)
- Alexa S Tyszka
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Drew A Larson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Joseph F Walker
- Department of Biological Sciences, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
2
|
Zhang D, Duran SSF, Lim WYS, Tan CKI, Cheong WCD, Suwardi A, Loh XJ. SARS-CoV-2 in wastewater: From detection to evaluation. MATERIALS TODAY. ADVANCES 2022; 13:100211. [PMID: 35098102 PMCID: PMC8786653 DOI: 10.1016/j.mtadv.2022.100211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 presence in wastewater has been reported in several studies and has received widespread attention among the Wastewater-based epidemiology (WBE) community. Such studies can potentially be used as a proxy for early warning of potential COVID-19 outbreak, or as a mitigation measure for potential virus transmission via contaminated water. In this review, we summarized the latest understanding on the detection, concentration, and evaluation of SARS-CoV-2 in wastewater. Importantly, we discuss factors affecting the quality of wastewater surveillance ranging from temperature, pH, starting concentration, as well as the presence of chemical pollutants. These factors greatly affect the reliability and comparability of studies reported by various communities across the world. Overall, this review provides a broadly encompassing guidance for epidemiological study using wastewater surveillance.
Collapse
Affiliation(s)
- Danwei Zhang
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Solco S Faye Duran
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wei Yang Samuel Lim
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Chee Kiang Ivan Tan
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Ady Suwardi
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Agency for Science, Technology and Research, Singapore, 138634
| |
Collapse
|
3
|
Abdullah, Faraji S, Mehmood F, Malik HMT, Ahmed I, Heidari P, Poczai P. The GASA Gene Family in Cacao (Theobroma cacao, Malvaceae): Genome Wide Identification and Expression Analysis. AGRONOMY 2021; 11:1425. [DOI: 10.3390/agronomy11071425] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The gibberellic acid-stimulated Arabidopsis (GASA/GAST) gene family is widely distributed in plants and involved in various physiological and biological processes. These genes also provide resistance to abiotic and biotic stresses, including antimicrobial, antiviral, and antifungal. We are interested in characterizing the GASA gene family and determining its role in various physiological and biological process in Theobroma cacao. Here, we report 17 tcGASA genes distributed on six chromosomes in T. cacao. The gene structure, promoter region, protein structure and biochemical properties, expression, and phylogenetics of all tcGASAs were analyzed. Phylogenetic analyses divided tcGASA proteins into five groups. Among 17 tcGASA genes, nine segmentally duplicating genes were identified which formed four pairs and cluster together in phylogenetic tree. Differential expression analyses revealed that most of the tcGASA genes showed elevated expression in the seeds (cacao food), implying their role in seed development. The differential expression of tcGASAs was recorded between the tolerant and susceptible cultivars of cacao, which indicating their possible role as fungal resistant. Our findings provide new insight into the function, evolution, and regulatory system of the GASA family genes in T.cacao and may suggest new target genes for development of fungi-resistant cacao varieties in breeding programs.
Collapse
|
4
|
de Souza MR, Teixeira RC, Daúde MM, Augusto ANL, Ságio SA, de Almeida AF, Barreto HG. Comparative assessment of three RNA extraction methods for obtaining high-quality RNA from Candida viswanathii biomass. J Microbiol Methods 2021; 184:106200. [PMID: 33713728 DOI: 10.1016/j.mimet.2021.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
Isolating high quality RNA is a limiting factor in molecular analysis, since it is the base for transcriptional studies. The RNA extraction method can directly affect the RNA quality and quantity, as well as, its overall cost. The industrial importance of the yeast genus Candida in several sectors comes from their capacity to produce Lipases. These enzymes are one of the main metabolites produced by some Candida species, and it has been shown that Candida yeast can biodegrade petroleum hydrocarbons and diesel oil from biosurfactants that they can produce, a feature that turns these organisms into potential combatants for bioremediation techniques. Thus, this study aimed to determine an efficient method for isolating high quality RNA from Candida viswanathii biomass. To achieve this aim, three different RNA extraction methods, TRIzol, Hot Acid Phenol, and CTAB (Cetyltrimethylammonium Bromide), were tested. The three tested methods allowed the isolation of high-quality RNA from C. viswanathii biomass and yielded suitable RNA quantity for carrying out RT-qPCR studies. In addition, all methods displayed high sensitivity for the expression analysis of the CvGPH1 gene through RT-qPCR, with TRIzol and CTAB showing the best results and the CTAB method displaying the best cost-benefit ratio (US$0.35/sample).
Collapse
Affiliation(s)
- Micaele Rodrigues de Souza
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Ronan Cristhian Teixeira
- Laboratory of Biotechnology, Food analysis, and Product Purification, Federal University of Tocantins, University Campus of Gurupi, TO, Brazil
| | - Matheus Martins Daúde
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Anderson Neiva Lopes Augusto
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil
| | - Alex Fernando de Almeida
- Laboratory of Biotechnology, Food analysis, and Product Purification, Federal University of Tocantins, University Campus of Gurupi, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis, Department of Life Sciences, Federal University of Tocantins, Palmas, University Campus of Palmas, TO, Brazil.
| |
Collapse
|