1
|
Dace HJW, Reus R, Ricco CR, Hall R, Farrant JM, Hilhorst HWM. A horizontal view of primary metabolomes in vegetative desiccation tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e14109. [PMID: 38148236 DOI: 10.1111/ppl.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/14/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Vegetative desiccation tolerance (VDT), the ability of such tissues to survive the near complete loss of cellular water, is a rare but polyphyletic phenotype. It is a complex multifactorial trait, typified by universal (core) factors but with many and varied adaptations due to plant architecture, biochemistry and biotic/abiotic dynamics of particular ecological niches. The ability to enter into a quiescent biophysically stable state is what ultimately determines desiccation tolerance. Thus, understanding the metabolomic complement of plants with VDT gives insight into the nature of survival as well as evolutionary aspects of VDT. In this study, we measured the soluble carbohydrate profiles and the polar, TMS-derivatisable metabolomes of 7 phylogenetically diverse species with VDT, in contrast with two desiccation sensitive (DS) species, under conditions of full hydration, severe water deficit stress, and desiccation. Our study confirmed the existence of core mechanisms of VDT systems associated with either constitutively abundant trehalose or the accumulation of raffinose family oligosaccharides and sucrose, with threshold ratios conditioned by other features of the metabolome. DS systems did not meet these ratios. Considerable chemical variations among VDT species suggest that co-occurring but distinct stresses (e.g., photooxidative stress) are dealt with using different chemical regimes. Furthermore, differences in the timing of metabolic shifts suggest there is not a single "desiccation programme" but that subprocesses are coordinated differently at different drying phases. There are likely to be constraints on the composition of a viable dry state and how different adaptive strategies interact with the biophysical constraints of VDT.
Collapse
Affiliation(s)
- Halford J W Dace
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robbin Reus
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Celeste Righi Ricco
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert Hall
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Dace HJ, Adetunji AE, Moore JP, Farrant JM, Hilhorst HW. A review of the role of metabolites in vegetative desiccation tolerance of angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102410. [PMID: 37413962 DOI: 10.1016/j.pbi.2023.102410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.e. the ability to survive near total loss of water. Important metabolites include sugars such as sucrose, trehalose and raffinose family of oligosaccharides, amino acids and organic acids, as well as antioxidants, representing a common core mechanism of desiccation tolerance. Additional metabolites are discussed in the context of species specificity and adaptation.
Collapse
Affiliation(s)
- Halford Jw Dace
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands
| | - Ademola E Adetunji
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| | - Henk Wm Hilhorst
- Laboratory of Plant Physiology, Wageningen University and Research, The Netherlands; Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| |
Collapse
|
3
|
Fuchs H, Plitta-Michalak BP, Małecka A, Ciszewska L, Sikorski Ł, Staszak AM, Michalak M, Ratajczak E. The chances in the redox priming of nondormant recalcitrant seeds by spermidine. TREE PHYSIOLOGY 2023:tpad036. [PMID: 36943301 DOI: 10.1093/treephys/tpad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/16/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The problems posed by seed sensitivity to desiccation and aging have motivated the development of various techniques for mitigating their detrimental effects. The redox priming of seeds in antioxidant solution to improve their postharvest performance is one of the approaches. Spermidine (Spd) was tested as an invigorating solution on nondormant recalcitrant (desiccation sensitive) seeds of the silver maple (Acer saccharinum L.). The treatment resulted in an 8-10% increase in germination capacity in seeds subjected to mild and severe desiccation, while in aged seeds stored for six months, no significant change was observed. The cellular redox milieu, genetic stability, mitochondrial structure and function were investigated to provide information about the cellular targets of Spd activity. Spd improved the antioxidative capacity, especially the activity of catalase, and cellular membrane stability, protected genome integrity from oxidative damage and increased the efficiency of mitochondria. However, it also elicited a hydrogen peroxide burst. Therefore, it seems that redox priming in nondormant seeds that are highly sensitive to desiccation, although positively affected desiccated seed performance, may not be a simple solution to reinvigorate stored seeds with a low-efficiency antioxidant system.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Beata P Plitta-Michalak
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-719 Olsztyn, Poland
| | - Arleta Małecka
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
- Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Centre, Garbary 15 street, 61-866 Poznan, Poland
| | - Liliana Ciszewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Łukasz Sikorski
- Department of Chemistry, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Aleksandra M Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology,University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
4
|
Seed-to-Seedling Transition: Novel Aspects. PLANTS 2022; 11:plants11151988. [PMID: 35956466 PMCID: PMC9370423 DOI: 10.3390/plants11151988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022]
Abstract
Transition from seed to seedling represents a critical stage in plants’ life cycles. This process includes three significant events in the seeds: (i) tissue hydration, (ii) the mobilization of reserve nutrients, and (iii) the activation of metabolic activity. Global metabolic rearrangements lead to the initiation of radicle growth and the resumption of vegetative development. It requires massive reprogramming of the transcriptome, proteome, metabolome, and attendant signaling pathways, resulting in the silencing of seed-maturation genes and the activation of vegetative growth genes. This Special Issue discusses the mechanisms of genetic, epigenetic, and hormonal switches during seed-to-seedling transitions. Detailed information has also been covered regarding the influence of germination features on seedling establishment.
Collapse
|
5
|
Perera‐Castro AV, Flexas J. Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13661. [PMID: 35249226 PMCID: PMC9314017 DOI: 10.1111/ppl.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mosses have been found outliers of the trade-off between photosynthesis and bulk elastic modulus described for vascular plants. Hence, potential trade-offs among physical features of cell walls and desiccation tolerance, water relations, and photosynthesis were assessed in bryophytes and other poikilohydric species. Long-term desiccation tolerance was quantified after variable periods of desiccation/rehydration cycles. Water relations were analyzed by pressure-volume curves. Mesophyll conductance was estimated using both CO2 curve-fitting and anatomical methods. Cell wall elasticity was the parameter that better correlated with the desiccation tolerance index for desiccation tolerant species and was antagonistic to higher absolute values of osmotic potential. Although high values of cell wall effective porosity were estimated compared with the values assumed for vascular plants, the desiccation tolerance index negatively correlated with the porosity in desiccation tolerant bryophytes. Neither cell wall thickness nor photosynthetic capacity were correlated with the desiccation tolerance index of the studied species. The existence of a potential evolutionary trade-off between cell wall thickness and desiccation tolerance is rejected. The photosynthetic capacity reported for bryophytes is independent of elasticity and desiccation tolerance. Furthermore, the role of cell wall thickness in limiting CO2 conductance would be overestimated under a scenario of high cell wall porosity for most bryophytes.
Collapse
Affiliation(s)
- Alicia V. Perera‐Castro
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- Department of Botany, Ecology and Plant PhysiologyUniversidad de La Laguna, Av. Astrofísico Francisco SánchezLa LagunaSpain
| | - Jaume Flexas
- Department of BiologyUniversitat de les Illes Balears, INAGEAPalma de MallorcaSpain
- King Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
6
|
Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122784. [PMID: 34961255 PMCID: PMC8706221 DOI: 10.3390/plants10122784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
Resurrection plants have an extraordinary ability to survive extreme water loss but still revive full metabolic activity when rehydrated. These plants are useful models to understand the complex biology of vegetative desiccation tolerance. Despite extensive studies of resurrection plants, many details underlying the mechanisms of desiccation tolerance remain unexplored. To summarize the progress in resurrection plant research and identify unexplored questions, we conducted a systematic review of 15 model angiosperm resurrection plants. This systematic review provides an overview of publication trends on resurrection plants, the geographical distribution of species and studies, and the methodology used. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses protocol we surveyed all publications on resurrection plants from 2000 and 2020. This yielded 185 empirical articles that matched our selection criteria. The most investigated plants were Craterostigma plantagineum (17.5%), Haberlea rhodopensis (13.7%), Xerophyta viscosa (reclassified as X. schlechteri) (11.9%), Myrothamnus flabellifolia (8.5%), and Boea hygrometrica (8.1%), with all other species accounting for less than 8% of publications. The majority of studies have been conducted in South Africa, Bulgaria, Germany, and China, but there are contributions from across the globe. Most studies were led by researchers working within the native range of the focal species, but some international and collaborative studies were also identified. The number of annual publications fluctuated, with a large but temporary increase in 2008. Many studies have employed physiological and transcriptomic methodologies to investigate the leaves of resurrection plants, but there was a paucity of studies on roots and only one metagenomic study was recovered. Based on these findings we suggest that future research focuses on resurrection plant roots and microbiome interactions to explore microbial communities associated with these plants, and their role in vegetative desiccation tolerance.
Collapse
Affiliation(s)
- Shandry M. Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| | - Rose A. Marks
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resiliency Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Jill M. Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa; (S.M.T.); (R.A.M.)
| |
Collapse
|
7
|
A Label-Free Proteomic and Complementary Metabolomic Analysis of Leaves of the Resurrection Plant Xerophytaschlechteri during Dehydration. Life (Basel) 2021; 11:life11111242. [PMID: 34833116 PMCID: PMC8624122 DOI: 10.3390/life11111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Vegetative desiccation tolerance, or the ability to survive the loss of ~95% relative water content (RWC), is rare in angiosperms, with these being commonly called resurrection plants. It is a complex multigenic and multi-factorial trait, with its understanding requiring a comprehensive systems biology approach. The aim of the current study was to conduct a label-free proteomic analysis of leaves of the resurrection plant Xerophyta schlechteri in response to desiccation. A targeted metabolomics approach was validated and correlated to the proteomics, contributing the missing link in studies on this species. Three physiological stages were identified: an early response to drying, during which the leaf tissues declined from full turgor to a RWC of ~80–70%, a mid-response in which the RWC declined to 40% and a late response where the tissues declined to 10% RWC. We identified 517 distinct proteins that were differentially expressed, of which 253 proteins were upregulated and 264 were downregulated in response to the three drying stages. Metabolomics analyses, which included monitoring the levels of a selection of phytohormones, amino acids, sugars, sugar alcohols, fatty acids and organic acids in response to dehydration, correlated with some of the proteomic differences, giving insight into the biological processes apparently involved in desiccation tolerance in this species.
Collapse
|