1
|
Starosta E, Jamruszka T, Szwarc J, Bocianowski J, Jędryczka M, Grynia M, Niemann J. DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Blackleg ( Leptosphaeria Spp.) Resistance in Rapeseed. Int J Mol Sci 2024; 25:8415. [PMID: 39125985 PMCID: PMC11313370 DOI: 10.3390/ijms25158415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-627 Poznań, Poland;
| | - Małgorzata Jędryczka
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland;
| | - Magdalena Grynia
- IHAR Group, Borowo Department, Strzelce Plant Breeding Ltd., Borowo 35, 64-020 Czempiń, Poland;
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (E.S.); (T.J.); (J.S.)
| |
Collapse
|
2
|
Starosta E, Szwarc J, Niemann J, Szewczyk K, Weigt D. Brassica napus Haploid and Double Haploid Production and Its Latest Applications. Curr Issues Mol Biol 2023; 45:4431-4450. [PMID: 37232751 DOI: 10.3390/cimb45050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Katarzyna Szewczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
3
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
4
|
Schnippenkoetter W, Hoque M, Maher R, Van de Wouw A, Hands P, Rolland V, Barrett L, Sprague S. Comparison of non-subjective relative fungal biomass measurements to quantify the Leptosphaeria maculans-Brassica napus interaction. PLANT METHODS 2021; 17:122. [PMID: 34852830 PMCID: PMC8638343 DOI: 10.1186/s13007-021-00822-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/17/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, is a serious threat to canola (Brassica napus) production worldwide. Quantitative resistance to this disease is a highly desirable trait but is difficult to precisely phenotype. Visual scores can be subjective and are prone to assessor bias. Methods to assess variation in quantitative resistance more accurately were developed based on quantifying in planta fungal biomass, including the Wheat Germ Agglutinin Chitin Assay (WAC), qPCR and ddPCR assays. RESULTS Disease assays were conducted by inoculating a range of canola cultivars with L. maculans isolates in glasshouse experiments and assessing fungal biomass in cotyledons, petioles and stem tissue harvested at different timepoints post-inoculation. PCR and WAC assay results were well correlated, repeatable across experiments and host tissues, and able to differentiate fungal biomass in different host-isolate treatments. In addition, the ddPCR assay was shown to differentiate between L. maculans isolates. CONCLUSIONS The ddPCR assay is more sensitive in detecting pathogens and more adaptable to high-throughput methods by using robotic systems than the WAC assay. Overall, these methods proved accurate and non-subjective, providing alternatives to visual assessments to quantify the L. maculans-B. napus interaction in all plant tissues throughout the progression of the disease in seedlings and mature plants and have potential for fine-scale blackleg resistance phenotyping in canola.
Collapse
Affiliation(s)
| | - Mohammad Hoque
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Rebecca Maher
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Angela Van de Wouw
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Phillip Hands
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Vivien Rolland
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Luke Barrett
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| | - Susan Sprague
- CSIRO Agriculture and Food, 1 Clunies Ross Street, Canberra, ACT 2601 Australia
| |
Collapse
|
5
|
Vollrath P, Chawla HS, Alnajar D, Gabur I, Lee H, Weber S, Ehrig L, Koopmann B, Snowdon RJ, Obermeier C. Dissection of Quantitative Blackleg Resistance Reveals Novel Variants of Resistance Gene Rlm9 in Elite Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:749491. [PMID: 34868134 PMCID: PMC8636856 DOI: 10.3389/fpls.2021.749491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/15/2023]
Abstract
Blackleg is one of the major fungal diseases in oilseed rape/canola worldwide. Most commercial cultivars carry R gene-mediated qualitative resistances that confer a high level of race-specific protection against Leptosphaeria maculans, the causal fungus of blackleg disease. However, monogenic resistances of this kind can potentially be rapidly overcome by mutations in the pathogen's avirulence genes. To counteract pathogen adaptation in this evolutionary arms race, there is a tremendous demand for quantitative background resistance to enhance durability and efficacy of blackleg resistance in oilseed rape. In this study, we characterized genomic regions contributing to quantitative L. maculans resistance by genome-wide association studies in a multiparental mapping population derived from six parental elite varieties exhibiting quantitative resistance, which were all crossed to one common susceptible parental elite variety. Resistance was screened using a fungal isolate with no corresponding avirulence (AvrLm) to major R genes present in the parents of the mapping population. Genome-wide association studies revealed eight significantly associated quantitative trait loci (QTL) on chromosomes A07 and A09, with small effects explaining 3-6% of the phenotypic variance. Unexpectedly, the qualitative blackleg resistance gene Rlm9 was found to be located within a resistance-associated haploblock on chromosome A07. Furthermore, long-range sequence data spanning this haploblock revealed high levels of single-nucleotide and structural variants within the Rlm9 coding sequence among the parents of the mapping population. The results suggest that novel variants of Rlm9 could play a previously unknown role in expression of quantitative disease resistance in oilseed rape.
Collapse
Affiliation(s)
- Paul Vollrath
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet S. Chawla
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dima Alnajar
- Plant Pathology and Crop Protection Division, Department of Crop Sciences, Georg August University of Göttingen, Göttingen, Germany
| | - Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Sciences, Faculty of Agriculture, Iasi University of Life Sciences, Iaşi, Romania
| | - HueyTyng Lee
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Sven Weber
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Lennard Ehrig
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Birger Koopmann
- Plant Pathology and Crop Protection Division, Department of Crop Sciences, Georg August University of Göttingen, Göttingen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
7
|
Kadkol GP, Meza J, Simpfendorfer S, Harden S, Cullis B. Genetic variation for fusarium crown rot tolerance in durum wheat. PLoS One 2021; 16:e0240766. [PMID: 33577599 PMCID: PMC7880437 DOI: 10.1371/journal.pone.0240766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Tolerance to the cereal disease Fusarium crown rot (FCR) was investigated in a set of 34 durum wheat genotypes, with Suntop, (bread wheat) and EGA Bellaroi (durum) as tolerant and intolerant controls, in a series of replicated field trials over four years with inoculated (FCR-i) and non-inoculated (FCR-n) plots of the genotypes. The genotypes included conventional durum lines and lines derived from crossing durum with 2-49, a bread wheat genotype with the highest level of partial resistance to FCR. A split plot trial design was chosen to optimize the efficiency for the prediction of FCR tolerance for each genotype. A multi-environment trial (MET) analysis was undertaken which indicated that there was good repeatability of FCR tolerance across years. Based on an FCR tolerance index, Suntop was the most tolerant genotype and EGA Bellaroi was very intolerant, but some durum wheats had FCR tolerance indices which were comparable to Suntop. These included some conventional durum genotypes, V101030, TD1702, V11TD013*3X-63 and DBA Bindaroi, as well as genotypes from crosses with 2-49 (V114916 and V114942). The correlation between FCR tolerance and FCR-n yield predictions was moderately negative indicating it could be somewhat difficult to develop FCR-tolerant genotypes that are high yielding under low disease pressure. However, FCR tolerance showed a positive correlation with FCR-i yield predictions in seasons of high disease expression indicating it could be possible to screen for FCR tolerance using only FCR-i treatments. These results are the first demonstration of genetic diversity in durum germplasm for FCR tolerance and they provide a basis for breeding for this trait.
Collapse
Affiliation(s)
| | - Jess Meza
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Steve Harden
- Tamworth Agricultural Institute, NSW DPI, Calala, New South Wales, Australia
| | - Brian Cullis
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
8
|
Singh KP, Kumari P, Rai PK. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2021; 12:617405. [PMID: 33747001 PMCID: PMC7965955 DOI: 10.3389/fpls.2021.617405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 05/15/2023]
Abstract
Brassica juncea is a major oilseed crop in tropical and subtropical countries, especially in south-east Asia like India, China, Bangladesh, and Pakistan. The widespread cultivation of genetically similar varieties tends to attract fungal pathogens which cause heavy yield losses in the absence of resistant sources. The conventional disease management techniques are often expensive, have limited efficacy, and cause additional harm to the environment. A substantial approach is to identify and use of resistance sources within the Brassica hosts and other non-hosts to ensure sustainable oilseed crop production. In the present review, we discuss six major fungal pathogens of B. juncea: Sclerotinia stem rot (Sclerotinia sclerotiorum), Alternaria blight (Alternaria brassicae), White rust (Albugo candida), Downy mildew (Hyaloperonospora parasitica), Powdery mildew (Erysiphe cruciferarum), and Blackleg (Leptoshaeria maculans). From discussing studies on pathogen prevalence in B. juncea, the review then focuses on highlighting the resistance sources and quantitative trait loci/gene identified so far from Brassicaceae and non-filial sources against these fungal pathogens. The problems in the identification of resistance sources for B. juncea concerning genome complexity in host subpopulation and pathotypes were addressed. Emphasis has been laid on more elaborate and coordinated research to identify and deploy R genes, robust techniques, and research materials. Examples of fully characterized genes conferring resistance have been discussed that can be transformed into B. juncea using advanced genomics tools. Lastly, effective strategies for B. juncea improvement through introgression of novel R genes, development of pre-breeding resistant lines, characterization of pathotypes, and defense-related secondary metabolites have been provided suggesting the plan for the development of resistant B. juncea.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
- *Correspondence: Kaushal Pratap Singh,
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
9
|
Rotating and stacking genes can improve crop resistance durability while potentially selecting highly virulent pathogen strains. Sci Rep 2020; 10:19752. [PMID: 33184393 PMCID: PMC7665077 DOI: 10.1038/s41598-020-76788-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Rotating crop cultivars with different resistance genes could slow the evolution of virulent strains of fungal pathogens, but could also produce highly virulent pathogen strains. We present a new model that links polycyclic pathogen epidemiology and population genetics in order to predict how different strategies of rotating cultivars with different resistances will affect the evolution of pathogen virulence and the breakdown of crop resistance. We modelled a situation where there were four different resistance genes that can be deployed within each crop cultivar, and four virulence genes that may be present within the pathogen. We simulated four different rotational management strategies: (i) no rotation; (ii) a different gene every year; (iii) a different gene every 5 years; and (iv) a different combination of two stacked genes each year. Results indicate that rotating cultivars can lead to longer periods of disease suppression but also to the selection of highly virulent strains. The efficacy and relative advantage of different resistant cultivar rotation strategies depended on the fitness penalties, initial virulence allele frequencies, and ability of non-virulent pathogen genotypes to grow and reproduce on resistant cultivars. By capturing the essential processes involved, our model provides a useful new tool for investigating the evolutionary dynamics of pathogen virulence and crop resistance breakdown.
Collapse
|